Bioretention: Construction
This section is also applicable to:
Construction Tasks Table[edit]
Construction Stage | Construction Task | Bioretention | Bioswale | Rain garden |
---|---|---|---|---|
Pre-Construction | Verification of Siting and LID Design | x | x | x |
Communication and Utilities Coordination | x | x | x | |
Installation of ESC and Construction Fencing | x | x | x | |
ESC Inspection and Maintenance (ongoing) | x | x | x | |
Excavation and Mass Grading |
Clearing and Grubbing | x | x | x |
Excavation | x | x | x | |
Rough Grade | x | x | x | |
Verification of Grading/Survey* | x | x | x | |
Scarification (if applicable) | x | x | x | |
Backfill Granular, Utilities and Pipes |
Geotextile (if applicable) | x | x | x |
Impermeable Liner (if applicable) | x | x | ||
Underdrain (if applicable) | x | x | ||
Overflow or Overflow Drain (if applicable) | x | x | x | |
Monitoring Well (if applicable) | x | x | ||
Clean Out Port | x | x | x | |
Storage Reservoir | x | x | ||
Stone Choker Layer (if applicable) | x | x | ||
Curbing (if applicable) | x | x | ||
Pre-treatment and Inlet | x | x | x | |
Soil/Filter Media | x | x | x | |
Finishing Grades: Inlet, Outlet, Biomedia and Plants |
Finishing Grading | x | x | x |
Riprap/Large Stone (if applicable) | x | x | x | |
Plant Verification and Installation | x | x | x | |
Mulch Placement | x | x | x | |
Stabilizing Contributing Drainage Area - Planting Adjacent Vegetation |
x | x | x | |
As-built Survey | x | x | ||
Permanent Fencing (if applicable) | x | x | ||
Post-Construction | Identify and Address Deficiencies | x | x | x |
Assumption/Certification Protocols | x | x | x |
Construction Tasks Described[edit]
Pre-Construction (KM)[edit]
Verification of Siting and LID Design
Installation of ESC and Construction Fencing
ESC Inspection and Maintenance (ongoing)
Excavation and Mass Grading (KM)[edit]
Clearing and Grubbing
Excavation
Rough Grade
Verification of Grading/Survey*
Scarification
Backfill Granular and Pipes (JC)[edit]
Geotextile
Impermeable liner
Underdrain
Overflow or Overflow Drain
Monitoring well
Backfill Granular and Pipes (SPC)[edit]
Storage Reservoir
Stone Choker Layer
Curbing
It is very important to make sure that the contractor responsible for curb construction understands curb cut designs and elevations. This is often a new technique for contractors and they may not understand the overall concept of water in the gutter line being directed behind the gutter.
Common mistakes to avoid:
- Elevated curb cuts and reverse slopes (sloping from back of curb towards instead of depressing from gutter line towards the back)
- Curb cut size (width)
- Placement of curb cuts on steep slopes or the down slope side of a catchbasin
Pre-treatment and Inlet
Pre-treatment structures are most cost effective when they slow down incoming flows, collect sediment for easy clean out, and release water to the bioretention facility in a non-erosive way. Some pre-treatment structures/strategies include:
- Vegetation: If sized correctly, it works more effectively in areas with more dispersed flow. However, in concentrated flow and sediment areas it might not be the best option. Sediment removal can be more difficult in areas of dense vegetation. An advantage of using vegetation as pre-treatment is that it can be easily integrated into the landscape design.
Soil Media / Filter Media
For small LID facilities, apply soil media in 150-300 mm lifts until desired top elevation of bioretention, bioswale or rain garden area is achieved. Thoroughly wet each lift before adding the next and wail until water has drainer through the soil before adding the next lift. Avoid manual or machine compaction. If possible, equipment should not be operated within the infiltration practice. If required, allow soil to dry before equipment is allowed back into the practice.
For large LID facilities, slinger trucks are recommended for spreading soil in even layers and reducing the need to move soil media manually or by backhoe. If possible, equipment should not be operated within the infiltration practice. If necessary, appropriate low ground pressure rated equipment can enter after at least 45 cm of bioretention, bioswale or rain garden soil is installed and has properly dried.
Soil/filter media’s design parameters and assumptions should be confirmed through in-situ permeability testing (e.g., permeameter measurements to determine hydraulic conductivity). Results of permeability testing should be reviewed by the designer and, if required, changes to the LID design may be needed.
All exposed soil areas that are not being actively worked must have temporary erosion protection or permanent cover within 7 days for slopes 3:1 or greater and 14 days for slopes 3:1 or greater and 14 days for slopes 3:1 or flatter. This should apply to all exposed soil areas year-round and until the site is stabilized.
Upon material arrival to the site, make sure to conduct:
- Chain of custody
- Visual inspection
- Grab a sample, ribbon test
Finishing Grades: Inlet, Outlet, Biomedia, Plants (SPC)[edit]
Finish Grading
The finish grading process is another critical handoff moment as a number of elements such as curbs, sidewalks, soils and vegetation start to come together to create the functional and aesthetic value of a site. The same supervision and communication that was put into controlling ESC in earlier stages is also required during finish grading. In many cases, more attention to detail is needed for elements in this phase that will create or not the success of the final product.
Riprap (Large Stone)
Plant Material Verification and Installation
Mulch Placement
Stabilizing Contributing Drainage Area - Planting Adjacent Vegetation
Finishing Grades: Inlet, Outlet, Biomedia, Plants (JC)[edit]
As-built Survey
Address Deficiencies and Assumption Protocols (JC)[edit]
Permanent Fencing
Identify and Address Deficiencies
Assumption/Certification