Changes

Jump to navigation Jump to search
Line 37: Line 37:

==Recent Performance Research==
==Recent Performance Research==
</br>
{|class="wikitable sortable"
|+ Performance of bioretention with internal water storage<ref>Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.</ref>
|-
!style="background: darkcyan; color: white"|Location
!style="background: darkcyan; color: white"|Filter media composition
!style="background: darkcyan; color: white"|Media depth (cm)
!style="background: darkcyan; color: white"|Internal water storage depth (cm)
!style="background: darkcyan; color: white"|I/P ratio
!style="background: darkcyan; color: white"|Runoff volume reduction (%)
!style="background: darkcyan; color: white"|TSS reduction (%)
!style="background: darkcyan; color: white"|TN reduction (%)
!style="background: darkcyan; color: white"|TP reduction (%)
|-
!Montréal<ref>Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.</ref>
|88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99
|-
!Virginia<ref>DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.</ref>
|88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99
|-
!rowspan="4"|North Carolina<ref>Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.</ref>
|rowspan="4"|96% sand, 4% fines||rowspan="2"|110||88||rowspan="2"|12||89||rowspan="4"|58||rowspan="4"|58||rowspan="4"|-10
|-
|58||93
|-
|rowspan="2"|96||72||rowspan="2"|13||98
|-
|42||100
|-
!North Carolina<ref>Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).</ref>
|loamy sand, 3% OM||120||60||20||99||-||-||-
|-
!rowspan="2"|North Carolina<ref>Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.</ref>
|rowspan="2"|98% sand, 2% fines||90||30||12||90||-||-||-
|-
|90||60||12||98||-||-||-
|-
!rowspan="2"|North Carolina<ref>Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.</ref>
|rowspan="2"|15% sand, 80% fines, 5% OM||60||45||68||-||-||54||63
|-
|90||75||68||-||-||54||58
|}


*[https://www3.epa.gov/region1/npdes/stormwater/research/epa-final-report-filter-study.pdf (USEPA, 2013) - Evaluation and Optimization of Bioretention Design for Nitrogen and Phosphorus Removal]
*[https://www3.epa.gov/region1/npdes/stormwater/research/epa-final-report-filter-study.pdf (USEPA, 2013) - Evaluation and Optimization of Bioretention Design for Nitrogen and Phosphorus Removal]

Navigation menu