Changes

Jump to navigation Jump to search
Line 349: Line 349:
|'''Double Ring Infiltrometer''' (constant head)
|'''Double Ring Infiltrometer''' (constant head)
|
|
*The double-ring infiltrometer (See photo example - Source: TRCA, 2012) is made of two concentric tubes typically of thin metal or hard plastic, that are both continuously filled with water such that a constant water level is maintained as water infiltrates into the soil (ASTM International, 2005<ref>ASTM International. 2005. Sealed Double-Ring Infiltrometers for Estimating Very Low Hydraulic Conductivities. Volume 28, Issue 3. CODEN: GTJODJ. Published Online: 30 March 2005. DOI: 10.1520/GTJ12447. https://www.astm.org/gtj12447.html</ref>). The rate at which water is added to the centre tube is measured to determine the infiltration rate. For detailed guidance on how to perform the testing, refer to ASTM D3385-09 Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer (ASTM International, 2018<ref>ASTM International. 2018. Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer. Book of Standards Volume: 04.08. Published Online:  11 April, 2018. DOI: 10.1520/D3385-09. https://www.astm.org/d3385-09.html</ref>) and ASTM D5093-15 Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer with Sealed-Inner Ring (ASTM International, 2018<ref>ASTM International. 2018. Standard Test Method for Field Measurement of Infiltration Rate Using Double-Ring Infiltrometer with Sealed-Inner Ring. Book of Standards Volume: 04.08 Published Online: 17 April, 2018. DOI: 10.1520/D5093-15. https://www.astm.org/d5093-15.html</ref> <br>
*The double-ring infiltrometer (See photo example - Source: TRCA, 2012) is made of two concentric tubes typically of thin metal or hard plastic, that are both continuously filled with water such that a constant water level is maintained as water infiltrates into the soil (ASTM International, 2005<ref>ASTM International. 2005. Sealed Double-Ring Infiltrometers for Estimating Very Low Hydraulic Conductivities. Volume 28, Issue 3. CODEN: GTJODJ. Published Online: 30 March 2005. DOI: 10.1520/GTJ12447. https://www.astm.org/gtj12447.html</ref>). The rate at which water is added to the centre tube is measured to determine the infiltration rate. For detailed guidance on how to perform the testing, refer to ASTM D3385-09 Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer (ASTM International, 2018<ref>ASTM International. 2018. Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer. Book of Standards Volume: 04.08. Published Online:  11 April, 2018. DOI: 10.1520/D3385-09. https://www.astm.org/d3385-09.html</ref>) and ASTM D5093-15 Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer with Sealed-Inner Ring (ASTM International, 2018<ref>ASTM International. 2018). Standard Test Method for Field Measurement of Infiltration Rate Using Double-Ring Infiltrometer with Sealed-Inner Ring. Book of Standards Volume: 04.08 Published Online: 17 April, 2018. DOI: 10.1520/D5093-15. https://www.astm.org/d5093-15.html</ref> <br>


*Accuracy is only moderate relative to permeameter methods (ASTM International, 2010<ref name="example1">ASTM International, 2010. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. Book of Standards Volume: 04.08. Published Online: 31 December, 2010. DOI: 10.1520/D5084-03. https://www.astm.org/d5084-03.html</ref>) and results tend to be biased towards higher values due to lateral flow. Potentially requires large volume of water and significant length of time for each measurement to reach steady state.  
*Accuracy is only moderate relative to permeameter methods (ASTM International, 2010<ref name="example1">ASTM International, 2010. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. Book of Standards Volume: 04.08. Published Online: 31 December, 2010. DOI: 10.1520/D5084-03. https://www.astm.org/d5084-03.html</ref>) and results tend to be biased towards higher values due to lateral flow. Potentially requires large volume of water and significant length of time for each measurement to reach steady state.  

Navigation menu