Difference between revisions of "Stone"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
m
m
Line 9: Line 9:
*To prevent erosion of soils beneath the stone and the migration of the stone into the soil, the stone bed should be underlain by a drainage [[Geotextiles|geotextile]].
*To prevent erosion of soils beneath the stone and the migration of the stone into the soil, the stone bed should be underlain by a drainage [[Geotextiles|geotextile]].


<<gallery mode=Slideshow>>
<gallery mode=Packed>
File:Geogrid and geotextile.jpg
File:Geogrid and geotextile.jpg
</gallery>
</gallery>

Revision as of 20:44, 6 March 2018

This rain garden in a school yard uses stone as both decorative edging and for erosion control.
This bioswale in a parking lot uses stone at the inlets and along the bottom of the swale to prevent erosion, as the sides are sloped.

For advice on aggregates used in underdrains, see Reservoir aggregate.

Stone or gravel can serve as a low maintenance decorative feature, but it may also serve many practical functions on the surface of an LID practice.

Stone for erosion control[edit]

Aggregates used to line swales or otherwise dissipate energy (e.g. in forebays) should have high angularity to increase the permissible shear stress applied by the flow of water. [1] However, in some surface landscaped applications there may be a desire to use a rounded aggregate such as 'river rock' for aesthetic reasons. Rounded stones should be of sufficient size to resist being moved by the flow of water. Typical stone for this purpose ranges between 50 mm and 250 mm. The larger the stone, the more energy dissipation.

  • Stone beds should be twice as thick as the largest stone's diameter.
  • To prevent erosion of soils beneath the stone and the migration of the stone into the soil, the stone bed should be underlain by a drainage geotextile.

Stone mulch[edit]

Stone mulch exists [2]


  1. Roger T. Kilgore and George K. Cotton, (2005) Design of Roadside Channels with Flexible Linings Hydraulic Engineering Circular Number 15, Third Edition https://www.fhwa.dot.gov/engineering/hydraulics/pubs/05114/05114.pdf
  2. Simcock, R and Dando, J. 2013. Mulch specification for stormwater bioretention devices. Prepared by Landcare Research New Zealand Ltd for Auckland Council. Auckland Council technical report, TR2013/056