Difference between revisions of "Clogging"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
Line 11: Line 11:
<ref>McLemore, A.J., J.R. Vogel, and S. Taghvaeian. 2017. “Bioretention Cell Design Guidance for Oklahoma.” http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-10743/BAE-1536web.pdf..</ref>
<ref>McLemore, A.J., J.R. Vogel, and S. Taghvaeian. 2017. “Bioretention Cell Design Guidance for Oklahoma.” http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-10743/BAE-1536web.pdf..</ref>
<ref>Water by Design. 2014. Bioretention Technical Design Guidelines (Version 1.1). http://hlw.org.au/u/lib/mob/20150715140823_de4e60ebc5526e263/wbd_2014_bioretentiontdg_mq_online.pdf.</ref>
<ref>Water by Design. 2014. Bioretention Technical Design Guidelines (Version 1.1). http://hlw.org.au/u/lib/mob/20150715140823_de4e60ebc5526e263/wbd_2014_bioretentiontdg_mq_online.pdf.</ref>
<ref>Willard, L.L., T. Wynn-Thompson, L. H. Krometis, T. P. \ Badgley, and B. D. Neher. 2017. “Does It Pay to Be Mature? Evaluation of Bioretention Cell Performance Seven Years Postconstruction.” Journal of Environmental Engineering 143 (9).</ref>
<ref>Massachusetts Department of Environmental Protection. . “Bioretention Areas.” 1999. http://prj.geosyntec.com/npsmanual/bioretentionareas.aspx.</ref>
<ref>Massachusetts Department of Environmental Protection. 2014. “Bioretention Areas & Rain Gardens.” 2014. http://prj.geosyntec.com/npsmanual/bioretentionareasandraingardens.aspx.</ref>


==Filter media==
==Filter media==
Salty water has been shown to cause degradation of the filter media, and subsequent loss of the initial text and flow conditions <ref>Kakuturu, S.P., and S.E. Clark. 2015. Clogging Mechanism of Stormwater Filter Media by NaCl as a Deicing Salt. doi: 10.1089/ees.2014.0337. [https://static1.squarespace.com/static/55c211c8e4b06ea5799e6c03/t/5605b199e4b08dbc6e74a369/1443213721385/Clogging+mechanism+of+stormwater+filter+media.pdf]</ref>
Salty water has been shown to cause degradation of the filter media, and subsequent loss of the initial text and flow conditions <ref>Kakuturu, S.P., and S.E. Clark. 2015. Clogging Mechanism of Stormwater Filter Media by NaCl as a Deicing Salt. doi: 10.1089/ees.2014.0337. [https://static1.squarespace.com/static/55c211c8e4b06ea5799e6c03/t/5605b199e4b08dbc6e74a369/1443213721385/Clogging+mechanism+of+stormwater+filter+media.pdf]</ref>
----
----

Revision as of 15:54, 18 October 2018

Grates[edit]

Geotextiles/filter fabric[edit]

Laboratory research has demonstrated that the performance and clogging of maturing filter fabric can be predicted mathematically, based upon the media/filter material particle size distribution [1]. Elsewhere the mechanisms behind the clogging have been studied and characterised using CT-scanning technology [2].


[3] [4] [5] [6] [7] [8] [9]

Filter media[edit]

Salty water has been shown to cause degradation of the filter media, and subsequent loss of the initial text and flow conditions [10]


  1. Palmeira, E. M. and Trejos Galvis, H. L. (2016). Opening sizes and filtration behaviour of non-woven geotextiles under confined and partial clogging conditions. Geosynthetics International. [1]
  2. Miszkowska, A., S. Lenart, and E. Koda. 2017. Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions. Water 9(660). doi:10.3390/w9090660.
  3. Upstate Forever. 2005. “Bioretention - LID Fact Sheet.” Greenville, South Carolina. https://www.upstateforever.org/files/files/CAW_LIDFact_Bioretention.pdf.
  4. Tahvonen, O. 2018. Adapting Bioretention Construction Details to Local Practices in Finland. Sustainability 10(276). doi: doi:10.3390/su10020276.
  5. McLemore, A.J., J.R. Vogel, and S. Taghvaeian. 2017. “Bioretention Cell Design Guidance for Oklahoma.” http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-10743/BAE-1536web.pdf..
  6. Water by Design. 2014. Bioretention Technical Design Guidelines (Version 1.1). http://hlw.org.au/u/lib/mob/20150715140823_de4e60ebc5526e263/wbd_2014_bioretentiontdg_mq_online.pdf.
  7. Willard, L.L., T. Wynn-Thompson, L. H. Krometis, T. P. \ Badgley, and B. D. Neher. 2017. “Does It Pay to Be Mature? Evaluation of Bioretention Cell Performance Seven Years Postconstruction.” Journal of Environmental Engineering 143 (9).
  8. Massachusetts Department of Environmental Protection. . “Bioretention Areas.” 1999. http://prj.geosyntec.com/npsmanual/bioretentionareas.aspx.
  9. Massachusetts Department of Environmental Protection. 2014. “Bioretention Areas & Rain Gardens.” 2014. http://prj.geosyntec.com/npsmanual/bioretentionareasandraingardens.aspx.
  10. Kakuturu, S.P., and S.E. Clark. 2015. Clogging Mechanism of Stormwater Filter Media by NaCl as a Deicing Salt. doi: 10.1089/ees.2014.0337. [2]