Difference between revisions of "Bioretention: Performance"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
Line 1: Line 1:
{|class="wikitable"
|+ Performance of bioretention with internal water storage<ref>Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.</ref>
|-
!style="background: darkcyan; color: white"|Location
!style="background: darkcyan; color: white"|Filter media composition
!style="background: darkcyan; color: white"|Media depth (cm)
!style="background: darkcyan; color: white"|Internal water storage depth (cm)
!style="background: darkcyan; color: white"|I/P*
!style="background: darkcyan; color: white"|Runoff volume reduction (%)
!style="background: darkcyan; color: white"|TN reduction (%)
!style="background: darkcyan; color: white"|TP reduction (%)
|-
!Montréal<ref>Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.</ref>
|88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99
!Virginia<ref>DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.</ref>
|88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99


<table class="table-responsive">
    <table class="table table-bordered">
        <caption><strong>Performance of bioretention with internal water storage<ref>Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.</ref></strong></caption>
        <tr class='success'>
            <th class="text-center">Location</th>
            <th class="text-center">Biomedia composition</th>
            <th class="text-center">Media depth (cm)</th>
            <th class="text-center">Internal water storage depth (cm)</th>
            <th class="text-center">I/P*</th>
            <th class="text-center">Runoff volume reduction (%)</th>
            <th class="text-center">TSS reduction(%)</th>
            <th class="text-center">TN reduction (%)</th>
            <th class="text-center">TP reduction (%)</th>
        </tr>
<tr><td class="text-center">Montréal<ref>Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.</ref></td>
            <td class="text-center">88% sand, 8% fines, 4% OM</td>
            <td class="text-center">180</td>
            <td class="text-center">150</td>
            <td class="text-center">47</td>
            <td class="text-center">97</td>
            <td class="text-center">99</td>
            <td class="text-center">99</td>
            <td class="text-center">99</td></tr>
<tr><td class="text-center">Virginia<ref>DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.</ref></td>
            <td class="text-center">88% sand, 8% fines, 4% OM</td>
            <td class="text-center">180</td>
            <td class="text-center">150</td>
            <td class="text-center">47</td>
            <td class="text-center">97</td>
            <td class="text-center">99</td>
            <td class="text-center">99</td>
            <td class="text-center">99</td></tr>
<tr><td rowspan=4 class="text-center">North Carolina<ref>Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.</ref></td>
<tr><td rowspan=4 class="text-center">North Carolina<ref>Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.</ref></td>
         <td rowspan=4 class="text-center">96% sand, 4% fines</td>
         <td rowspan=4 class="text-center">96% sand, 4% fines</td>
Line 101: Line 85:
   *Impervious/Pervious ratio, i.e. the area of catchment divided by surface area of the cell
   *Impervious/Pervious ratio, i.e. the area of catchment divided by surface area of the cell
</table>
</table>
====References====
 
 
==References==
<em><references /></em>
<em><references /></em>
{{:Feedback}}
 


<strong>For review</strong>
<strong>For review</strong>

Revision as of 02:14, 12 August 2017

Performance of bioretention with internal water storage[1]
Location Filter media composition Media depth (cm) Internal water storage depth (cm) I/P* Runoff volume reduction (%) TN reduction (%) TP reduction (%)
Montréal[2] 88% sand, 8% fines, 4% OM 180 150 47 97 99 99 99 Virginia[3] 88% sand, 8% fines, 4% OM 180 150 47 97 99 99 99
North Carolina[4] 96% sand, 4% fines 110 88 12 89 58 58 -10
58 93
96 72 13 98
42 100
North Carolina[5] loamy sand, 3% OM 120 60 20 >99 - - -
North Carolina[6] 98% sand, 2% fines 90 30 12 90 - - -
90 60 12 98 - - -
North Carolina[7] 15% sand, 80% fines, 5% OM 60 45 68 - - 54 63
90 75 68 - - 54 58
 *Impervious/Pervious ratio, i.e. the area of catchment divided by surface area of the cell


References[edit]

  1. Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.
  2. Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.
  3. DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.
  4. Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.
  5. Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).
  6. Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.
  7. Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.


For review