Line 31: |
Line 31: |
|
| |
|
| Systems located in low permeability soils with an infiltration rate of less than 15 mm/hr (i.e., hydraulic conductivity of less than 1x10<sup>-6</sup> cm/s), require incorporation of a perforated pipe underdrain. Pavements require an impermeable geomembrane where the underlying soils are contaminated or the pavement is within two year time-of-travel wellhead protection area (see local drinking water source protection plan) | | Systems located in low permeability soils with an infiltration rate of less than 15 mm/hr (i.e., hydraulic conductivity of less than 1x10<sup>-6</sup> cm/s), require incorporation of a perforated pipe underdrain. Pavements require an impermeable geomembrane where the underlying soils are contaminated or the pavement is within two year time-of-travel wellhead protection area (see local drinking water source protection plan) |
|
| |
|
| |
|
| ===Space=== | | ===Space=== |
Line 38: |
Line 37: |
|
| |
|
| Permeable pavements should be located down-gradient from building foundations. If the pavement does not receive drainage from other surfaces, no setback is required. If the pavement receives drainage from other surfaces a minimum setback of four metres down-gradient is recommended. A smaller setback may be permissible where foundations are protected by a geomembrane. | | Permeable pavements should be located down-gradient from building foundations. If the pavement does not receive drainage from other surfaces, no setback is required. If the pavement receives drainage from other surfaces a minimum setback of four metres down-gradient is recommended. A smaller setback may be permissible where foundations are protected by a geomembrane. |
|
| |
|
| |
|
| ===Site Topography=== | | ===Site Topography=== |
Line 46: |
Line 44: |
| Maintaining a separation of one metre between the elevations of the base of the practice and the seasonally high water table, or top of bedrock is recommended. Lesser or greater values may be considered based on groundwater mounding analysis. See Groundwater page for further guidance and a spreadsheet tool. | | Maintaining a separation of one metre between the elevations of the base of the practice and the seasonally high water table, or top of bedrock is recommended. Lesser or greater values may be considered based on groundwater mounding analysis. See Groundwater page for further guidance and a spreadsheet tool. |
| To protect groundwater from possible contamination, runoff from pollution hot spots should not be treated by permeable pavements designed for full or partial infiltration. Facilities designed with an impermeable liner (filtration-only) can be used. | | To protect groundwater from possible contamination, runoff from pollution hot spots should not be treated by permeable pavements designed for full or partial infiltration. Facilities designed with an impermeable liner (filtration-only) can be used. |
| | Also see the [[Site considerations]] page. |
|
| |
|
| Also see [[Site considerations]] page.
| | ===Private Sites=== |
| | | If permeable paving systems are installed on private lots, property owners or managers will need education on their routine maintenance needs, understanding the long-term maintenance plan. They may also be subject to a legally binding maintenance agreement. An incentive program, such as a storm sewer user fee based on the area of impervious cover on a property that is directly connected to a storm sewer, could be used to encourage property owners or managers to maintain existing practices. |
| ===Risk of Groundwater Contamination===
| |
| *Stormwater infiltration practices should not receive runoff from high traffic areas where large amounts of [[de-icing salts]] are applied (e.g., busy highways), nor from pollution hot spots (e.g., source areas where land uses or activities have the potential to generate highly contaminated runoff such as vehicle fuelling, servicing or demolition areas, outdoor storage or handling areas for hazardous materials and some heavy industry sites)
| |
| *Prioritize infiltration of runoff from source areas that are comparatively less contaminated such as roofs and low traffic areas.
| |
| | |
| ===Heavy Vehicle Traffic===
| |
| [[File:PaveDrain.jpg|thumb|Many types of permeable surface are certified to ASSHTO-25, including PaveDrain PICP type paving, LSRCA headquarters, Newmarket, ON]]
| |
| Permeable paving is not typically used in locations subject to heavy loads. However, some permeable pavers are designed for heavy loads and have been used in commercial port loading and storage areas.
| |
| | |
| ===Setbacks from Buildings===
| |
| Permeable paving should be located downslope from building foundations. If the paving does not receive runoff from other surfaces, no setback is required from building foundations. Otherwise, a minimum setback of 4 m down-gradient from building foundations is recommended.
| |
| | |
| ===On Private Property=== | |
| If permeable paving systems are installed on private lots, property owners or managers will need education on their routine maintenance needs, understanding the long-term maintenance plan. They may also be subject to a legally binding maintenance agreement. An incentive program, such as a storm sewer user fee based on the area of impervious cover on a property that is directly connected to a storm sewer, could be used to encourage property owners or managers to maintain existing practices. | |
|
| |
|
| ==Design== | | ==Design== |