Line 40: |
Line 40: |
|
| |
|
| ==Recent Performance Research== | | ==Recent Performance Research== |
| | ==Water Quality Performance of Bioretention with IWSZ== |
| | </br> |
| | {|class="wikitable sortable" |
| | |+ Performance of bioretention with internal water storage<ref>Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.</ref> |
| | |- |
| | !style="background: darkcyan; color: white"|Location |
| | !style="background: darkcyan; color: white"|Filter media composition |
| | !style="background: darkcyan; color: white"|Media depth (cm) |
| | !style="background: darkcyan; color: white"|Internal water storage depth (cm) |
| | !style="background: darkcyan; color: white"|I/P ratio |
| | !style="background: darkcyan; color: white"|Runoff volume reduction (%) |
| | !style="background: darkcyan; color: white"|TSS reduction (%) |
| | !style="background: darkcyan; color: white"|TN reduction (%) |
| | !style="background: darkcyan; color: white"|TP reduction (%) |
| | |- |
| | !Montréal<ref>Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.</ref> |
| | |88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99 |
| | |- |
| | !Virginia<ref>DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.</ref> |
| | |88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99 |
| | |- |
| | !rowspan="4"|North Carolina<ref>Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.</ref> |
| | |rowspan="4"|96% sand, 4% fines||rowspan="2"|110||88||rowspan="2"|12||89||rowspan="4"|58||rowspan="4"|58||rowspan="4"|-10 |
| | |- |
| | |58||93 |
| | |- |
| | |rowspan="2"|96||72||rowspan="2"|13||98 |
| | |- |
| | |42||100 |
| | |- |
| | !North Carolina<ref>Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).</ref> |
| | |loamy sand, 3% OM||120||60||20||99||-||-||- |
| | |- |
| | !rowspan="2"|North Carolina<ref>Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.</ref> |
| | |rowspan="2"|98% sand, 2% fines||90||30||12||90||-||-||- |
| | |- |
| | |90||60||12||98||-||-||- |
| | |- |
| | !rowspan="2"|North Carolina<ref>Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.</ref> |
| | |rowspan="2"|15% sand, 80% fines, 5% OM||60||45||68||-||-||54||63 |
| | |- |
| | |90||75||68||-||-||54||58 |
| | |} |
| | |
| | |
| | |
|
| |
|
| *[https://www3.epa.gov/region1/npdes/stormwater/research/epa-final-report-filter-study.pdf (USEPA, 2013) - Evaluation and Optimization of Bioretention Design for Nitrogen and Phosphorus Removal] | | *[https://www3.epa.gov/region1/npdes/stormwater/research/epa-final-report-filter-study.pdf (USEPA, 2013) - Evaluation and Optimization of Bioretention Design for Nitrogen and Phosphorus Removal] |