Changes

Jump to navigation Jump to search
no edit summary
Line 10: Line 10:

===Post-Development Hydrologic Changes===
===Post-Development Hydrologic Changes===
'''Water Quantity Changes'''
====Water Quantity Changes====


While rainfall intensity, soil and vegetation characteristics, slope length and steepness all play a role in the timing and rate of runoff generation, the creation of impervious surfaces – including rooftops, driveways, roads and parking lots – disrupts rainfall’s ability to penetrate the soil surface and infiltrate.  In heavily urbanized, well-drained areas, the time of concentration is significantly reduced due to the relative smoothness of impervious surfaces, and the dense network of stormwater conveyance infrastructure including gutters, catch basins and subsurface pipes.  
While rainfall intensity, soil and vegetation characteristics, slope length and steepness all play a role in the timing and rate of runoff generation, the creation of impervious surfaces – including rooftops, driveways, roads and parking lots – disrupts rainfall’s ability to penetrate the soil surface and infiltrate.  In heavily urbanized, well-drained areas, the time of concentration is significantly reduced due to the relative smoothness of impervious surfaces, and the dense network of stormwater conveyance infrastructure including gutters, catch basins and subsurface pipes.  
Line 22: Line 22:
The large volumes of stormwater runoff produced under such circumstances overstress conventional stormwater systems leading to flooding, erosion, habitat destruction, degraded water quality, damage to infrastructure systems and post-flooding health-related concerns including mould growth and contaminated water.  
The large volumes of stormwater runoff produced under such circumstances overstress conventional stormwater systems leading to flooding, erosion, habitat destruction, degraded water quality, damage to infrastructure systems and post-flooding health-related concerns including mould growth and contaminated water.  


'''Water Quality Impacts'''
====Water Quality Impacts====


The surface runoff generated in urban areas frequently carries with it a cocktail of pollutants.  Although it is variable in nature, runoff pollutants are typically derived from a combination of fine sediments from atmospheric deposition, oil, grease and heavy metals (including Cd, Cu, Fe, Ni, Pb, Zn, etc.) from vehicular traffic and industrial activities, nutrients derived from lawn fertilizers and pet waste, and – in seasonally cold climates – road salts from winter maintenance activities <ref>Aryal, R. Vigneswaran, S. Kandasamy, J.; Naidu, R. 2010. Urban Stormwater Quality and Treatment. Korean Journal of Chemical Engineering, 27(5):1343-1359</ref> <ref> Trenouth, W.R. Gharabaghi, B., Perera, N. 2015. Road salt application planning tool for winter de-icing operations. Journal of Hydrology. 524:401-410</ref>. These pollutants accumulate on the road surface during the antecedent dry period between consecutive rainfall events, and are washed off at the onset of rainfall. The majority of particles are washed off with the first flush of stormwater runoff, typically considered to be accounted for with the first 25 mm, or one inch or runoff <ref>Stenstrom, M.K. Kayhanian, M. 2005. First flush phenomenon characterization. Prepared for California Department of Transportation, Division of Environmental Analysis. Available at URL: http://www.dot.ca.gov/hq/env/stormwater/pdf/CTSW-RT-05-073-02-6_First_Flush_Final_9-30-05.pdf</ref>.  
The surface runoff generated in urban areas frequently carries with it a cocktail of pollutants.  Although it is variable in nature, runoff pollutants are typically derived from a combination of fine sediments from atmospheric deposition, oil, grease and heavy metals (including Cd, Cu, Fe, Ni, Pb, Zn, etc.) from vehicular traffic and industrial activities, nutrients derived from lawn fertilizers and pet waste, and – in seasonally cold climates – road salts from winter maintenance activities <ref>Aryal, R. Vigneswaran, S. Kandasamy, J.; Naidu, R. 2010. Urban Stormwater Quality and Treatment. Korean Journal of Chemical Engineering, 27(5):1343-1359</ref> <ref> Trenouth, W.R. Gharabaghi, B., Perera, N. 2015. Road salt application planning tool for winter de-icing operations. Journal of Hydrology. 524:401-410</ref>. These pollutants accumulate on the road surface during the antecedent dry period between consecutive rainfall events, and are washed off at the onset of rainfall. The majority of particles are washed off with the first flush of stormwater runoff, typically considered to be accounted for with the first 25 mm, or one inch or runoff <ref>Stenstrom, M.K. Kayhanian, M. 2005. First flush phenomenon characterization. Prepared for California Department of Transportation, Division of Environmental Analysis. Available at URL: http://www.dot.ca.gov/hq/env/stormwater/pdf/CTSW-RT-05-073-02-6_First_Flush_Final_9-30-05.pdf</ref>.  


'''Climate-Related Impacts'''
====Climate-Related Impacts====


Since 1995, Ontario has had a weather-related state of emergency almost every single year <ref>Swiss Re (in collaboration with Institute for Catastrophic Loss Reduction) (2010). Making Flood Insurable for Canadian Homeowners. Available at URL: http://www.iclr.org/images/Making_Flood_Insurable_for_Canada.pdf</ref>. The City of Windsor saw extreme events that caused severe flooding in 2007, 2010, 2016 and 2017 <ref>City of Windsor. 2012. Climate Change Adaptation Plan. Available at URL: http://www.citywindsor.ca/residents/environment/environmental-master-plan/documents/windsor%20climate%20change%20adaptation%20plan.pdf</ref>. The Ottawa region experienced one extreme event every year for five years, and in the Greater Toronto Area (GTA), there have been four extreme rainfall events in the past ten years <ref>Environment Canada. 2014. Climate. Available at URL: http://climate.weather.gc.ca/</ref>. Such high intensity events produce heavy rainfall in relatively short periods of time. While it is reasonable to expect runoff to be produced under such conditions – particularly when rain falls which exceeds a soil’s hydraulic conductivity - the production of stormwater is exacerbated in urban areas where the overwhelming majority of surfaces are impervious. The problems associated with managing stormwater volumes are exacerbated when dense stormsewer networks efficiently convey stormwater runoff volumes from a large contributing upland area to a single outlet location, such as a stormsewer outfall in a river or stream.
Since 1995, Ontario has had a weather-related state of emergency almost every single year <ref>Swiss Re (in collaboration with Institute for Catastrophic Loss Reduction) (2010). Making Flood Insurable for Canadian Homeowners. Available at URL: http://www.iclr.org/images/Making_Flood_Insurable_for_Canada.pdf</ref>. The City of Windsor saw extreme events that caused severe flooding in 2007, 2010, 2016 and 2017 <ref>City of Windsor. 2012. Climate Change Adaptation Plan. Available at URL: http://www.citywindsor.ca/residents/environment/environmental-master-plan/documents/windsor%20climate%20change%20adaptation%20plan.pdf</ref>. The Ottawa region experienced one extreme event every year for five years, and in the Greater Toronto Area (GTA), there have been four extreme rainfall events in the past ten years <ref>Environment Canada. 2014. Climate. Available at URL: http://climate.weather.gc.ca/</ref>. Such high intensity events produce heavy rainfall in relatively short periods of time. While it is reasonable to expect runoff to be produced under such conditions – particularly when rain falls which exceeds a soil’s hydraulic conductivity - the production of stormwater is exacerbated in urban areas where the overwhelming majority of surfaces are impervious. The problems associated with managing stormwater volumes are exacerbated when dense stormsewer networks efficiently convey stormwater runoff volumes from a large contributing upland area to a single outlet location, such as a stormsewer outfall in a river or stream.
Line 54: Line 54:
Caption: Drought conditions at Island Lake in the summer of 2007
Caption: Drought conditions at Island Lake in the summer of 2007


'''Alleviating Pressures Using Low Impact Approaches to Development'''
===Alleviating Pressures Using Low Impact Approaches to Development===


There are many reasons that make LID the smart choice when it comes to stormwater management. The creation of well-designed permeable landscapes provides an opportunity to capture, retain and infiltrate stormwater runoff close to its source.  Rather than treat stormwater as a waste product to be discarded, LID recognizes stormwater for what it is – a resource to be safeguarded and harnessed for the benefit of both the built and natural environment.
There are many reasons that make LID the smart choice when it comes to stormwater management. The creation of well-designed permeable landscapes provides an opportunity to capture, retain and infiltrate stormwater runoff close to its source.  Rather than treat stormwater as a waste product to be discarded, LID recognizes stormwater for what it is – a resource to be safeguarded and harnessed for the benefit of both the built and natural environment.
Line 66: Line 66:
INSERT PHOTO
INSERT PHOTO


References:
==References==
 
<references/>
 
Bäckstrom, M.; Karlsson, S.; Bäckman, L.; Folkeson, L.; Lind, B.  2004.  Mobilisation of Heavy Metals by De-icing Salts in a Roadside Environment.  Water Research, 38:720-732.
106

edits

Navigation menu