Flow through perforated pipe
Revision as of 03:24, 25 February 2018 by Jenny Hill (talk | contribs)
Manufacturers of perforated pipe are often able to provide the open area per meter length.
Where:d is the coefficient of discharge (0.61 for a sharp edged orifice),
- B is the clogging factor (between 0.5 to calculate a for matured installation and 1 to calculate a new perfectly performing BMP),
- Cd is the coefficient of discharge (usually 0.61 for the sharp edge created by relatively thin pipe walls),
- Ao is the total open area per unit length of pipe (m2/m),
- g is acceleration due to gravity (m/s2)
- Σ d is the total depth of bioretention components over the perforated pipe (mm) (e.g. ponding/mulch/filter media/choker layer),
Example calculation[edit]
A part used roll of 100 mm diameter perforated pipe appears long enough to use for a stormwater planter project. Upon inspection the pipe is found to have perforations of 8 x 1.5 mm on six sides, repeated every 3 cm along the pipe. To calculate the maximum flow rate, first the open area per meter is calculated: