Changes

Jump to navigation Jump to search
no edit summary
Line 442: Line 442:
**Costs include overhead and inflation to represent contractor pricing. It was assumed the practice is part of a new development (i.e., not a retrofit), thereby excluding (de)mobilization costs unless a particular piece of equipment would not normally have been present at the site. Additionally, it was assumed that excavated soil associated with construction of the BMP would be reused elsewhere on site. Overhead costs were presumed to consist of construction management (4.5%), design (2.5%), small tools (0.5%), clean up (0.3%) and other (2.2%).  
**Costs include overhead and inflation to represent contractor pricing. It was assumed the practice is part of a new development (i.e., not a retrofit), thereby excluding (de)mobilization costs unless a particular piece of equipment would not normally have been present at the site. Additionally, it was assumed that excavated soil associated with construction of the BMP would be reused elsewhere on site. Overhead costs were presumed to consist of construction management (4.5%), design (2.5%), small tools (0.5%), clean up (0.3%) and other (2.2%).  
*For maintenance frequencies and requirements and the life span of each practice are based on both literature and practical experience. Life cycle and associated maintenance costs are evaluated over a 50 year timeframe, which is the typical period over which infrastructure decisions are made.
*For maintenance frequencies and requirements and the life span of each practice are based on both literature and practical experience. Life cycle and associated maintenance costs are evaluated over a 50 year timeframe, which is the typical period over which infrastructure decisions are made.
*For enhanced grass swales it is assumed that some rehabilitation (e.g., rehabilitative maintenance) work will be needed on the filter bed surface once the BMP reaches 25 and 50 years of age in order to maintain functional drainage performance at an acceptable level. Included in the rehabilitation costs are (de)mobilization costs, as equipment would not have been present on site. Design costs were not included in the rehabilitation as it was assumed that the original LID practice design would be used to inform this work. The annual average maintenance cost does not include rehabilitation costs and therefore represents an average of routine maintenance tasks, as outlined in the Table under section, [[Inspection and Maintenance: Bioretention & Dry Swales#Routine Maintenance - Key Components and I&M Tasks|Routine Maintenance - Key Components and I&M Tasks]] above. All cost value estimates represent the net present value (NPV) as the calculation takes into account average annual interest (2%) and discount (3%) rates over the evaluation time periods.
*For enhanced grass swales it is assumed that some rehabilitation (e.g., rehabilitative maintenance) work will be needed on the filter bed surface once the BMP reaches 25 and 50 years of age in order to maintain functional drainage performance at an acceptable level. Included in the rehabilitation costs are (de)mobilization costs, as equipment would not have been present on site. Design costs were not included in the rehabilitation as it was assumed that the original LID practice design would be used to inform this work. The annual average maintenance cost does not include rehabilitation costs and therefore represents an average of routine maintenance tasks, as outlined in the Table under section, [[Inspection and Maintenance: Enhanced Swales#Routine Maintenance - Key Components and I&M Tasks|Routine Maintenance - Key Components and I&M Tasks]] above. All cost value estimates represent the net present value (NPV) as the calculation takes into account average annual interest (2%) and discount (3%) rates over the evaluation time periods.
*For all enhanced swale design variations, the CDA has been defined as a 2,000 m2 impervious pavement area plus the footprint area of a bioretention cell that is 133 m2 in size, as per design recommendations. The impervious area to pervious area ratio (I:P ratio) used to size the BMP footprint is 15:1, which is the maximum ratio recommended in the LID SWM Planning and Design Guide (CVC & TRCA, 2010)<ref>CVC and TRCA. 2010. Low Impact Development Stormwater Management Planning and Design Guide. Version 1.0. https://cvc.ca/wp-content/uploads/2014/04/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf</ref>. It is assumed that water drains to the cell through curb inlets spaced 6 m apart with stone cover on the filter bed at the inlets to dissipate the energy of the flowing water.
*For all enhanced swale design variations, the CDA has been defined as a 2,000 m2 impervious pavement area plus the footprint area of a bioretention cell that is 133 m2 in size, as per design recommendations. The impervious area to pervious area ratio (I:P ratio) used to size the BMP footprint is 15:1, which is the maximum ratio recommended in the LID SWM Planning and Design Guide (CVC & TRCA, 2010)<ref>CVC and TRCA. 2010. Low Impact Development Stormwater Management Planning and Design Guide. Version 1.0. https://cvc.ca/wp-content/uploads/2014/04/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf</ref>. It is assumed that water drains to the cell through curb inlets spaced 6 m apart with stone cover on the filter bed at the inlets to dissipate the energy of the flowing water.
*Estimates of the life cycle costs of bioretention and dry swales in Canadian dollars per unit CDA ($/m2) are presented in the table below. The [[Cost analysis resources|LID Life Cycle Costing Tool]] allows users to select what BMP type and design variation applies, and to use the default assumptions to generate planning level cost estimates.
*Estimates of the life cycle costs of Enhanced Swales in Canadian dollars per unit CDA ($/m2) are presented in the table below. The [[Cost analysis resources|LID Life Cycle Costing Tool]] allows users to select what BMP type and design variation applies, and to use the default assumptions to generate planning level cost estimates.
**Users can also input their own values relating to a site or area, design, unit costs, and inspection and maintenance task frequencies to generate customized cost estimates, specific to a certain project, context or stormwater infrastructure program.
**Users can also input their own values relating to a site or area, design, unit costs, and inspection and maintenance task frequencies to generate customized cost estimates, specific to a certain project, context or stormwater infrastructure program.
**For all BMP design variations and maintenance scenarios, it is assumed that rehabilitation of part or all of the filter bed surface will be necessary once the BMP reaches 25 and 50 years of age to maintain acceptable surface drainage performance (e.g., surface ponding drainage time). Filter bed rehabilitation for bioretention and dry swales is assumed to typically involve the tasks outlined under section, [[Inspection and Maintenance: Enhanced Swales#Routine Maintenance - Key Components and I&M Tasks|Routine Maintenance - Key Components and I&M Tasks]] above.<br>
**For all BMP design variations and maintenance scenarios, it is assumed that rehabilitation of part or all of the filter bed surface will be necessary once the BMP reaches 25 and 50 years of age to maintain acceptable surface drainage performance (e.g., surface ponding drainage time). Filter bed rehabilitation for enhanced swales is assumed to typically involve the tasks outlined under section, [[Inspection and Maintenance: Enhanced Swales#Routine Maintenance - Key Components and I&M Tasks|Routine Maintenance - Key Components and I&M Tasks]] above.<br>
</br>
</br>
<br>
[[File:Life cycle costs swales.PNG|thumb|center|900px|Life cycle cost estimates for all variation types of [[enhanced swales]] under minimum and high frequency scenarios (in 2016 $ figures).<ref>TRCA. 2018. Inspection and Maintenance of Stormwater Best Management Practices. Bioretention - Fact Sheet. https://sustainabletechnologies.ca/app/uploads/2018/02/Bioretention-and-Dry-Swales-Fact-Sheet.pdf</ref>]]
[[File:Life cycle cost for all variations.PNG|thumb|center|900px|Life cycle cost estimates for all variation types of [[bioretention]] and [[Dry swale|dry swales]] under minimum and high frequency scenarios (in 2016 $ figures).<ref>TRCA. 2018. Inspection and Maintenance of Stormwater Best Management Practices. Bioretention - Fact Sheet. https://sustainabletechnologies.ca/app/uploads/2018/02/Bioretention-and-Dry-Swales-Fact-Sheet.pdf</ref>]]


'''Notes:'''
'''Notes:'''
Line 460: Line 459:
#Rehabilitation costs are estimated to be between 24.4 to 28.1% of the original construction costs for High Frequency and Minimum Recommended maintenance program scenarios, respectively.
#Rehabilitation costs are estimated to be between 24.4 to 28.1% of the original construction costs for High Frequency and Minimum Recommended maintenance program scenarios, respectively.
# Maintenance and rehabilitation costs over a 25 year time period are estimated to be 1.77 to 2.66 times the original construction cost, for the Minimum Recommended and High Frequency maintenance scenarios respectively, depending on check dam construction material.
# Maintenance and rehabilitation costs over a 25 year time period are estimated to be 1.77 to 2.66 times the original construction cost, for the Minimum Recommended and High Frequency maintenance scenarios respectively, depending on check dam construction material.
# Maintenance and rehabilitation costs over a 50 year time period are estimated to be 3.13 and 4.74 times the original construction cost for the Minimum Recommended and High Frequency maintenance scenarios respectively, depending on check dam construction material.<small>
# Maintenance and rehabilitation costs over a 50 year time period are estimated to be 3.13 and 4.74 times the original construction cost for the Minimum Recommended and High Frequency maintenance scenarios respectively, depending on check dam construction material.</small>


==Inspection Field Data Sheet==
==Inspection Field Data Sheet==


Feel free to '''download''' (downward facing arrow on the top righthand side) and '''print''' (Pinter emoticon on top right hand side) the following [[Bioretention]] and [[Dry swale]] Inspection Field Data Form developed by TRCA, STEP and its partners for the [https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide]<ref>STEP. 2016. Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide. https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf</ref>.
Feel free to '''download''' (downward facing arrow on the top righthand side) and '''print''' (Pinter emoticon on top right hand side) the following [[enhanced swales|Enhanced Swale]] Inspection Field Data Form developed by TRCA, STEP and its partners for the [https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide]<ref>STEP. 2016. Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide. https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf</ref>.


The 8 page document prompts users to fill out details previously mentioned above on this page in other sections about various zones associated with [[Bioretention]] and [[Dry swale]] features (i.e. inlets, perimeter of the feature, filter bed, outlets, etc.) and describe why each area is a pass or fail, and if remediate action is required and under what timeframe it would be completed by. Furthermore, the forms prompt the reviewer to determine what type of  inspection is being conducted for the feature in question: Construction (C), Routine Operation (RO), Maintenance Verification (MV), or Performance Verification (PV). <br>
The 6 page document prompts users to fill out details previously mentioned above on this page in other sections about various zones associated with [[Enhanced swales|Enhanced swale]] features (i.e. inlets, perimeter of the feature, filter bed, outlets, etc.) and describe why each area is a pass or fail, and if remediate action is required and under what timeframe it would be completed by. Furthermore, the forms prompt the reviewer to determine what type of  inspection is being conducted for the feature in question: Construction (C), Routine Operation (RO), Maintenance Verification (MV), or Performance Verification (PV). <br>
<br>
<br>


[[File:Continuous monitoring.PNG|thumb|300px|Staff conducting monitoring of bioretention's water level with the use of a [[Digital technologies|continuous water level data logger]] located in the feature's[[Wells|monitoring well]]. [https://sustainabletechnologies.ca/app/uploads/2018/02/Bioretention-and-Dry-Swales-Fact-Sheet.pdf Photo Source: TRCA, 2018]<ref>TRCA. 2018. Inspection and Maintenance of Stormwater Best Management Practices - Bioretention. Fact Sheet. https://sustainabletechnologies.ca/app/uploads/2018/02/Bioretention-and-Dry-Swales-Fact-Sheet.pdf</ref>]]
[[File:Newly developed swale.PNG|thumb|330px|Example of a newly developed enhanced swale in a recently developed subdivision.]]


<pdf width="900" height="800">File:Bio Swale Inspection Sheet.pdf</pdf>
<pdf width="900" height="800">File:Swales inspection sheet.pdf</pdf>


==References==
==References==

Navigation menu