Changes

Jump to navigation Jump to search
4,571 bytes added ,  1 year ago
Line 82: Line 82:

==Salt Reduction Best Practices==
==Salt Reduction Best Practices==
Since salt is not removed by traditional best practices, reducing application rates to only what is needed to achieve pavement safety requirements is the best means of managing impacts of salt on the environment and infrastructure. Pavement friction testing has shown that salting beyond the required amount does not translate into improved safety: [https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf LSRCA's Technical Bulletin: Alternatives to Salt].<ref>LSRCA. 2020. Friction and Parking Lots. Technical Bulletin, Volume 3 September 2020. https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf</ref>
Since salt is not removed by traditional best practices, reducing application rates to only what is needed to achieve pavement safety requirements is the best means of managing impacts of salt on the environment and infrastructure. Pavement friction testing has shown that salting beyond the required amount does not translate into improved safety: [https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf LSRCA's Technical Bulletin: Alternatives to Salt].<ref name="example9">LSRCA. 2020. Friction and Parking Lots. Technical Bulletin, Volume 3 September 2020. https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf</ref>


A review of salt management best practices for parking lots, private drives and walkways is provided by [https://sustainabletechnologies.ca/app/uploads/2022/04/Snow-and-Ice-Control-BMPs-for-Parking-lots-and-Sidewalks.pdf STEP (2022)]<ref name="example6">Van Seters, T. 2022. Review of Snow and Ice Control Practices on Parking Lots and Walkways. Toronto and Region Conservation Authority, Sustainable Technologies Evaluation Program. Ontario. https://sustainabletechnologies.ca/app/uploads/2022/04/Snow-and-Ice-Control-BMPs-for-Parking-lots-and-Sidewalks.pdf</ref>. The Transportation Association of Canada's (TAC), [https://www.tac-atc.ca/sites/tac-atc.ca/files/site/doc/resources/roadsalt-1.pdf Synthesis of Salt Management Best Practices]<ref>Transportation Association of Canada (TAC). 2013. Syntheses of Best Practices Road Salt Management. April 2013. https://www.tac-atc.ca/sites/tac-atc.ca/files/site/doc/resources/roadsalt-1.pdf</ref> and [https://clearroads.org/research-by-topic/ Clear Roads research]<ref>Clear Roads. 2022. Research by Topic. Accessed - May 16 2022: https://clearroads.org/research-by-topic/</ref>and  provides best practice resources more relevant to municipalities and road authorities. The following sections outline what property owners/managers and winter maintenance professionals can do to avoid excess salting.   
A review of salt management best practices for parking lots, private drives and walkways is provided by [https://sustainabletechnologies.ca/app/uploads/2022/04/Snow-and-Ice-Control-BMPs-for-Parking-lots-and-Sidewalks.pdf STEP (2022)]<ref name="example6">Van Seters, T. 2022. Review of Snow and Ice Control Practices on Parking Lots and Walkways. Toronto and Region Conservation Authority, Sustainable Technologies Evaluation Program. Ontario. https://sustainabletechnologies.ca/app/uploads/2022/04/Snow-and-Ice-Control-BMPs-for-Parking-lots-and-Sidewalks.pdf</ref>. The Transportation Association of Canada's (TAC), [https://www.tac-atc.ca/sites/tac-atc.ca/files/site/doc/resources/roadsalt-1.pdf Synthesis of Salt Management Best Practices]<ref>Transportation Association of Canada (TAC). 2013. Syntheses of Best Practices Road Salt Management. April 2013. https://www.tac-atc.ca/sites/tac-atc.ca/files/site/doc/resources/roadsalt-1.pdf</ref> and [https://clearroads.org/research-by-topic/ Clear Roads research]<ref>Clear Roads. 2022. Research by Topic. Accessed - May 16 2022: https://clearroads.org/research-by-topic/</ref>and  provides best practice resources more relevant to municipalities and road authorities. The following sections outline what property owners/managers and winter maintenance professionals can do to avoid excess salting.   
Line 253: Line 253:

Generally, the [[vegetation]] growing closest to the source will be most strongly affected by salt. Plants actively growing in late winter (when salt levels are highest) are also more significantly affected. Therefore, warm season [[Graminoids: List|grasses]] offer an advantage over cool season grasses, because they emerge later in the spring when excess salt has been flushed away.
Generally, the [[vegetation]] growing closest to the source will be most strongly affected by salt. Plants actively growing in late winter (when salt levels are highest) are also more significantly affected. Therefore, warm season [[Graminoids: List|grasses]] offer an advantage over cool season grasses, because they emerge later in the spring when excess salt has been flushed away.
{{:turf}}. See the [[Plant lists]] page for salt tolerant plants suitable for LID.   
{{:turf}}  
For other species of trees and shrubs, see the [[Plant lists]] page for salt tolerant plants suitable for LID.   
[[File:Brine-Storage-Tank-1-scaled.jpg|thumb|430px|Example of three brine holding tanks that can reuse meltwater from salt induced snowmelt to be reused on a pavement surface i na high traffic area. These systems are generally built with corrosion-free materials to maximize the product's lifetime. Photo Source: [https://www.camionsystems.com/product/brine-storage-tank/ Camion]™<ref>Camion™. 2022. Brine Storage Tank. Accessed 28 Mar. 2022. https://www.camionsystems.com/product/brine-storage-tank/</ref>]]
[[File:Brine-Storage-Tank-1-scaled.jpg|thumb|430px|Example of three brine holding tanks that can reuse meltwater from salt induced snowmelt to be reused on a pavement surface i na high traffic area. These systems are generally built with corrosion-free materials to maximize the product's lifetime. Photo Source: [https://www.camionsystems.com/product/brine-storage-tank/ Camion]™<ref>Camion™. 2022. Brine Storage Tank. Accessed 28 Mar. 2022. https://www.camionsystems.com/product/brine-storage-tank/</ref>]]


Line 263: Line 264:
*Brine holding tanks: Collection of first flush (high chloride concentration) melt water runoff from a salt induced snowmelt (as opposed to rain and temperature induced snowmelt) has the potential to be beneficial if captured and reused as an anti-icing or pre wetting solution. In order to collect the first flush runoff, an electronically actuated valve controlled by an electrical conductivity sensor would be installed at the desired conveyance point to divert and collect the high chloride concentration runoff into a brine holding tank. The brine holding tank would be placed below ground and a pump could be connected to pump the brine solution into an anti-icing tank or directly used to pre-wet rock salt. <ref>LSRCA. 2015.Parking Lot Design Guidelines to Promote Salt Reduction. GHD. 11115623 (2). https://www.lsrca.on.ca/Shared%20Documents/Parking-Lot-Design-Guidelines/Parking-Lot-Guidelines-Salt-Reduction.pdf</ref>
*Brine holding tanks: Collection of first flush (high chloride concentration) melt water runoff from a salt induced snowmelt (as opposed to rain and temperature induced snowmelt) has the potential to be beneficial if captured and reused as an anti-icing or pre wetting solution. In order to collect the first flush runoff, an electronically actuated valve controlled by an electrical conductivity sensor would be installed at the desired conveyance point to divert and collect the high chloride concentration runoff into a brine holding tank. The brine holding tank would be placed below ground and a pump could be connected to pump the brine solution into an anti-icing tank or directly used to pre-wet rock salt. <ref>LSRCA. 2015.Parking Lot Design Guidelines to Promote Salt Reduction. GHD. 11115623 (2). https://www.lsrca.on.ca/Shared%20Documents/Parking-Lot-Design-Guidelines/Parking-Lot-Guidelines-Salt-Reduction.pdf</ref>


==Case Studies & External links==
==Case Studies & External Links==
===Case Studies===
A series of STEP case studies highlighting the effectiveness of different salt management practices is currently being developed.  A brief synopsis of some of these case studies is provided in Appendix B of Van Seters, 2022.  Full case study documents will be posted here when available. 
 
*[https://ottawariverkeeper.ca/2021-2022-road-salt/ The 2021-2022 Road Salt Program at Ottawa Riverkeeper]<ref>Oswald, 2021. Road salt reduction on Ryerson University campus. Information Sheet. Presentation by C. Oswald at the Ottawa Riverkeeper salt management forum in April 2021. Ottawa Riverkeeper. January 18, 2022. Accessed May 16 2022. https://ottawariverkeeper.ca/2021-2022-road-salt/</ref>
**This ongoing study is being conducted to evaluate the feasibility and environmental benefits (specifically, the reduction of chloride (Cl) entering the environment) of using direct liquid application (i.e., NaCl brine) on Ryerson campus for both anti-icing and de-icing. Updated reports and findings will be posted here once published
 
[[File:Anti-icing truck.PNG|thumb|500px|De-icer agent applied to a roadway before a precipitation rent (Source: STEP, 2019)<ref name="example10" />]]
 
*[https://pub-peelregion.escribemeetings.com/filestream.ashx?DocumentId=9868 Using Liquids to Reduce Winter salt Use on Commercial Parking Lots]<ref>: Murison, L., Oswald, C., Gillion, E., and International Landscaping Inc. 2022. Salt Management - Partnership and Outreach Update. https://pub-peelregion.escribemeetings.com/filestream.ashx?DocumentId=9868.</ref>
**This ongoing study is being conducted by Peel Regio and LSRCA staff, along with contractor International Landscaping Inc. to evaluate the feasibility and environmental benefits (specifically, the reduction of chloride (Cl) entering the environment) of using liquid anti-icing with NaCl brine (with and without beet juice additive) on commercial parking lots. Updated reports and findings will be posted here once published
 
*[https://www.regionofwaterloo.ca/en/living-here/resources/Documents/water/was-protect_closed_sign_program.PDF Closing Areas to Reduce Salt Use and Winter Maintenance Costs]<ref>Region of Waterloo. 2020. Salt reduction partnership. Region of Waterloo, Water Services. https://www.regionofwaterloo.ca/en/living-here/resources/Documents/water/was-protect_closed_sign_program.PDF</ref>
**Ongoing study by the Region of Waterloo to explore the feasibility and interest in reducing salt use and maintenance costs by  establishing outreach campaigns and support programs that encourage property owners and managers (of ICI properties) to close under-used areas of their properties during the winter, which can be a very successful means to reduce salt use, and provide significant savings on winter maintenance costs.


==Case Studies & External Links==
*[https://sustainabletechnologies.ca/app/uploads/2019/06/Salt-application-best-practices-for-winter-maintenance-contracts-brochure.pdf Salt Application Best Practices document for Winter Maintenance Contracts]<ref>STEP. 2019. Salt Application Best Practices for Winter Maintenance Contracts. Technical Brief. https://sustainabletechnologies.ca/app/uploads/2019/06/Salt-application-best-practices-for-winter-maintenance-contracts-brochure.pdf</ref>  
*[https://sustainabletechnologies.ca/app/uploads/2019/06/Salt-application-best-practices-for-winter-maintenance-contracts-brochure.pdf Salt Application Best Practices document for Winter Maintenance Contracts]<ref>STEP. 2019. Salt Application Best Practices for Winter Maintenance Contracts. Technical Brief. https://sustainabletechnologies.ca/app/uploads/2019/06/Salt-application-best-practices-for-winter-maintenance-contracts-brochure.pdf</ref>  
**Businesses can help reduce over-salting by ensuring that rock salt during the winter months is applied responsibly on parking lots and walkways. An easy way to do this is by ensuring that your snow and ice maintenance contract includes provisions requesting that industry best practices be employed and that associated operators are adequately trained. Some BMP for procurement for rock salt application services include:
**Businesses can help reduce over-salting by ensuring that rock salt during the winter months is applied responsibly on parking lots and walkways. An easy way to do this is by ensuring that your snow and ice maintenance contract includes provisions requesting that industry best practices be employed and that associated operators are adequately trained. Some BMP for procurement for rock salt application services include:
Line 276: Line 289:
***Using Trained Professionals through the [http://www.smartaboutsalt.com/training Ontario Smart about Salt Program]
***Using Trained Professionals through the [http://www.smartaboutsalt.com/training Ontario Smart about Salt Program]


*[https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf LSRCA's Technical Bulletin: Alternatives to Salt].<ref name="example9" />
**This technical bulletin by LSRCA discusses the issue of high levels of salt application, and how contractors, property owners and municipalities can save time and money by looking at the emerging research which shows how salt use can also be optimized in parking lots. This research was done by using a friction tester, with a goal of quantifying the effectiveness of various practices and salt application rates.
*[https://journals.sagepub.com/doi/10.1177/0361198120957320 Winter Maintenance of Permeable Interlocking Concrete Pavement: Evaluating Opportunities to Reduce Road Salt Pollution and Improve Winter Safety]<ref>Marvin, J.T., Scott, J., Van Seters, T., Bowers, R. and Drake, J.A. 2021. Winter Maintenance of Permeable Interlocking Concrete Pavement: Evaluating Opportunities to Reduce Road Salt Pollution and Improve Winter Safety. Transportation Research Record, 2675(2), pp.174-186. https://journals.sagepub.com/doi/abs/10.1177/0361198120957320</ref>
**This study conducted at the Kortright Centre in Vaughan, ON. found that permeable pavement (specifically Permeable Interlocking Concrete Pavement - PICP) provides equivalent or higher levels of safety when compared to traditional asphalt when treated with de-icing products. Furthermore, when re-freezing of melted snow and ice occurred durign the evening and overnight black ice was observed on the asphalt, but not the PICP. Overall, it was found PICP surfaces require less de-icer and as a result have a lower risk of slips and falls for pedestrians, when compared to asphalt.
===External Links===
[[File:Smart about salt training.PNG|thumb|500px|Smart About Salt training program teaches winter contracting company staff and facility management staff how to appropriately apply rock salt and still being mindful about its environmental impact, all while reducing reducing liability and maintenance costs. To learn more, click the picture above.<ref>Smart About Salt Council (SASC). n.d. Smart About Salt: Winter Salt Management Program. http://www.smartaboutsalt.com/</ref>|link=http://www.smartaboutsalt.com/training]]
[[File:Smart about salt training.PNG|thumb|500px|Smart About Salt training program teaches winter contracting company staff and facility management staff how to appropriately apply rock salt and still being mindful about its environmental impact, all while reducing reducing liability and maintenance costs. To learn more, click the picture above.<ref>Smart About Salt Council (SASC). n.d. Smart About Salt: Winter Salt Management Program. http://www.smartaboutsalt.com/</ref>|link=http://www.smartaboutsalt.com/training]]


Line 290: Line 310:
**The purpose of this manual By the Minnesota Pollution Control Agency (MPCA) is to deliver practical advice to those managing parking lots and sidewalks and help make proactive, cost-effective, environmentally conscious choices in winter parking lot and sidewalk management in the State of Minnesota. This knowledge will provide the opportunity to become a leader in the industry by operating more efficiently and reducing environmental impacts. The manual is  based on the Minnesota Snow and Ice Control Field Handbook for Snowplow Operators, produced by the Minnesota Local Technical Assistance Program Center, and on the training materials for the MPCA's Winter Maintenance of Parking Lots and Sidewalks training class.  
**The purpose of this manual By the Minnesota Pollution Control Agency (MPCA) is to deliver practical advice to those managing parking lots and sidewalks and help make proactive, cost-effective, environmentally conscious choices in winter parking lot and sidewalk management in the State of Minnesota. This knowledge will provide the opportunity to become a leader in the industry by operating more efficiently and reducing environmental impacts. The manual is  based on the Minnesota Snow and Ice Control Field Handbook for Snowplow Operators, produced by the Minnesota Local Technical Assistance Program Center, and on the training materials for the MPCA's Winter Maintenance of Parking Lots and Sidewalks training class.  


*[https://www.researchgate.net/publication/331991752_A_review_of_the_species_community_and_ecosystem_impacts_of_road_salt_salinisation_in_fresh_waters A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters]. <ref>Hintz, W.D. and Relyea, R.A. 2019. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater biology, 64(6), pp.1081-1097. https://www.researchgate.net/publication/331991752_A_review_of_the_species_community_and_ecosystem_impacts_of_road_salt_salinisation_in_fresh_waters</ref>.
*[https://www.researchgate.net/publication/331991752_A_review_of_the_species_community_and_ecosystem_impacts_of_road_salt_salinisation_in_fresh_waters A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters].<ref name="example10">Hintz, W.D. and Relyea, R.A. 2019. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater biology, 64(6), pp.1081-1097. https://www.researchgate.net/publication/331991752_A_review_of_the_species_community_and_ecosystem_impacts_of_road_salt_salinisation_in_fresh_waters</ref>.
**This study of the impacts of road salt on local ecosystems by Hintz and Relyea (2019), found that road salts negatively affect species at all trophic levels, from biofilms to fish species but the concentration of road salt where adverse effects were observed varied and the effects themselves ranged from reductions in fecundity, size and shape to alterations to nutrient and energy flow at an ecosystem level and increased greenhouse gas emissions from contaminated wetlands and altered hydrology and oxygen, nitrogen and carbon level dynamics in lakes and streams. Concentrations at which road salt triggered an effect varied considerably. To read more about their findings, click the link above.
**This study of the impacts of road salt on local ecosystems by Hintz and Relyea (2019), found that road salts negatively affect species at all trophic levels, from biofilms to fish species but the concentration of road salt where adverse effects were observed varied and the effects themselves ranged from reductions in fecundity, size and shape to alterations to nutrient and energy flow at an ecosystem level and increased greenhouse gas emissions from contaminated wetlands and altered hydrology and oxygen, nitrogen and carbon level dynamics in lakes and streams. Concentrations at which road salt triggered an effect varied considerably. To read more about their findings, click the link above.


Navigation menu