Changes

Jump to navigation Jump to search
Line 1: Line 1:
[[File:Treatmenttrain TRCA.JPG|thumb|600px|Example of a generalization of utilizing a “Treatment Train Approach” illustrated here. Using [[permeable pavement]] as a source control/lot control on your business/residential property, effluent then flows into conveyance control such as an [[Exfiltration trench|exfiltration system]], used in conjunction with the minor stormwater system as shown above. and then flowing into a stormwater management pond (wet pond) for additional erosion and flood control (TRCA, n.d. Understand - Stormwater Management. Accessed: https://trca.ca/conservation/stormwater-management/understand/</ref>]]
[[File:Treatmenttrain TRCA.JPG|thumb|600px|Example of a generalization of utilizing a “Treatment Train Approach” illustrated here. Using [[permeable pavement]] as a source control/lot control on your business/residential property, effluent then flows into conveyance control such as an [[Exfiltration trench|exfiltration system]], used in conjunction with the minor stormwater system as shown above. and then flowing into a stormwater management pond (wet pond) for additional erosion and flood control (TRCA, n.d. Understand - Stormwater Management. Accessed: https://trca.ca/conservation/stormwater-management/understand/</ref>]]
{{TOClimit|2}}
{{TOClimit|2}}


<br>


==Overview==
==Overview==
<br>
</br>
A treatment train uses a combination of lot-level or source (LID), conveyance and/or end-of-pipe practices to meet water quality, water quantity, water balance, and erosion design criteria for the site.  These may be implemented to reduce the burden of facility maintenance, address a broader range of design criteria, increase overall treatment system performance, and/or control the rate of flow through downstream facilities.
A treatment train uses a combination of lot-level or source (LID), conveyance and/or end-of-pipe practices to meet water quality, water quantity, water balance, and erosion design criteria for the site.  These may be implemented to reduce the burden of facility maintenance, address a broader range of design criteria, increase overall treatment system performance, and/or control the rate of flow through downstream facilities.
<br>
</br>


{|class="wikitable"
{|class="wikitable"
Line 86: Line 96:

===3. Treatment trains designed to enhance overall treatment system performance===
===3. Treatment trains designed to enhance overall treatment system performance===
[[File:Storm bmps rev3.png|thumb|500px|An example of a treatment train approach used to enhance treatment performance in an area with limited surface area due to parking and the adjacent municipal roadway. In this example water is able to be collected and then conveyed from a [[green roof]] system, a [[bioswale]] and [[permeable pavement]] parking lot, through an [[OGS|oil and grit separator]] and then to an [[Infiltration chamber]] or an underground [[cistern]] tank. Clean water can then be reused onsite or overflow out to the municipal storm sewer and receiving waterbody (City of Saskatoon, 2023).<ref>City of Saskatoon. 2023. Storm Water Management Credit Program. Image courtesy of the City of Mississauga. Accessed: https://www.saskatoon.ca/services-residents/power-water-sewer/storm-water/storm-water-management-credit-program</ref>]]
[[File:Storm bmps rev3.png|thumb|400px|An example of a treatment train approach used to enhance treatment performance in an area with limited surface area due to parking and the adjacent municipal roadway. In this example water is able to be collected and then conveyed from a [[green roof]] system, a [[bioswale]] and [[permeable pavement]] parking lot, through an [[OGS|oil and grit separator]] and then to an [[Infiltration chamber]] or an underground [[Rainwater harvesting|cistern]] tank. Clean water can then be reused onsite or overflow out to the municipal storm sewer and receiving waterbody (City of Saskatoon, 2023).<ref>City of Saskatoon. 2023. Storm Water Management Credit Program. Image courtesy of the City of Mississauga. Accessed: https://www.saskatoon.ca/services-residents/power-water-sewer/storm-water/storm-water-management-credit-program</ref>]]


The design intent of these treatment trains is to enhance overall system performance.  The previous category of treatment train may enhance performance, but the objective may not always be to address a broader range of stormwater criteria.   
The design intent of these treatment trains is to enhance overall system performance.  The previous category of treatment train may enhance performance, but the objective may not always be to address a broader range of stormwater criteria.   
Line 154: Line 164:

==Treatment trains with runoff volume reduction facilities==
==Treatment trains with runoff volume reduction facilities==
[[File:72208733 sustainable drainage 624.jpg|thumb|650px|A treatment train example of source controls in a housing development neighbourhood with [[vegetated filter strips]], [[swales]] and [[permeable pavement]] driveways and roadways achieving water balance requirements during a 90th percentile event and then overflows can be conveyed to a [[dry pond]] / [[wet pond]] and then into receiving [[constructed wetlands]] and water courses (Susdrain/CIRIA, 2014)<ref>Susdrain/CIRIA. 2014. Sustainable Urban Drainage Systems (SUDS) in Flood Prevention. DuratexUK Rubber & Plastics Ltd. Accessed: https://www.duratex.co.uk/company-blog/industry-news/sustainable-urban-drainage-systems-suds-in-flood-prevention</ref>]]
These types of treatment trains are becoming more common because they can achieve multiple [[Runoff volume control targets|stormwater control]] and [[water quality|treatment objectives]].  Since wet ponds alone do not achieve stormwater water balance criteria, they must be supplemented with facilities providing runoff volume reductions to meet regulatory requirements. If site water balance objectives require control of the 90th percentile event (roughly 25 – 30 mm in most jurisdictions), the same infiltration facilities may also be used to treat the water quality storm (typically 25 mm), allowing for a [[dry pond]] or similar temporary detention facility to be used at the end-of-pipe to meet flood and erosion control criteria.
These types of treatment trains are becoming more common because they can achieve multiple [[Runoff volume control targets|stormwater control]] and [[water quality|treatment objectives]].  Since wet ponds alone do not achieve stormwater water balance criteria, they must be supplemented with facilities providing runoff volume reductions to meet regulatory requirements. If site water balance objectives require control of the 90th percentile event (roughly 25 – 30 mm in most jurisdictions), the same infiltration facilities may also be used to treat the water quality storm (typically 25 mm), allowing for a [[dry pond]] or similar temporary detention facility to be used at the end-of-pipe to meet flood and erosion control criteria.


Navigation menu