Definition of Low Impact Development

From LID SWM Planning and Design Guide
(Redirected from Low impact development)
Jump to navigation Jump to search

This article is about definitions. The regional context for LID is presented in urbanization and climate change.

This guide has been developed as a tool to help developers, consultants, municipalities and landowners understand and implement more sustainable stormwater management planning and design practices in their watersheds. Many jurisdictions have defined the term low impact development. The Sustainable Technologies Evaluation Program uses the following definition:

Low impact development (LID) is a stormwater management strategy that seeks to mitigate the impacts of increased runoff and stormwater pollution by managing runoff as close to its source as possible. To accomplish this, it uses practices that help to preserve or to restore predevelopment hydrological and ecological functions. For preservation, it uses site design strategies to minimize runoff and to protect natural drainage patterns. For restoration, it uses distributed structural practices that filter, detain, retain, infiltrate, evapotranspire and harvest stormwater. LID practices can effectively remove sediment, nutrients, pathogens and metals from runoff, and they reduce the volume and intensity of stormwater flows.

The field of stormwater management has undergone considerable evolution in the last 40 - 50 years, from underground drainage systems for rapid water disposal, to stormwater management ponds, to today’s myriad of near-to-nature practices and technologies[1]. This paradigm shift could be explained by a change of perception about water from a waste to a resource. With this evolution comes the evolution of terminology to describe the latest visions, practices and technologies. There are various terms used in stormwater management related literature across the globe. Some terms differ only in their geography while others differ in their connotation.

Regional terminology use[1]
Terminology North America New Zealand Australia United Kingdom Europe
Green Infrastructure (GI) x
Low Impact Development (LID) x x
Water Sensitive Urban Design (WSUD) x x x
Integrated Urban Water Management (IUWM) x
Best Management Practices (BMPs) x
Stormwater Control Measures (SCMs) x
Alternative Measures x
Source Control x

LID and Green infrastructure[edit]

In many cases, the terms LID and GI are used interchangeably to describe an alternate management approach from the conventional ‘grey’ infrastructure approach. The inconsistent use of these two terms by different agencies and scholars across North America and other parts of the world contributes to the confusion already associated with these relatively new approaches to stormwater management. In this guide we make a distinction between LID and GI on the grounds of geographic and structural (engineered) scales of classification and implementation. Traditionally, the term "infrastructure" connotes a requirement that is necessary to keep an urban center functional, while green space connotes a want, putting it at the bottom of priority lists. The term GI emerged to put more emphasis on green space as a need rather than a want and elevate it within budget priority lists. As such, in addition to traditional water-related infrastructure, GI encompasses non-traditional infrastructure, such as:

  • heritage features,
  • parklands,
  • street trees,
  • natural channels, or

in other words any natural(ized) green space.

GI describes a strategically planned and delivered network of natural and semi-natural elements that collectively deliver a wide range of ecosystem, social and economic services to help reduce dependence on grey infrastructure and to address environmental resilience and climate change. The LID approach to stormwater management falls under the overarching umbrella of GI as a semi-natural element.

References[edit]

  1. 1.0 1.1 Fletcher TD, Shuster W, Hunt WF, et al. SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015;12(7):525-542. doi:10.1080/1573062X.2014.916314.