Difference between revisions of "Inspection and Maintenance: Vegetated Filter Strips"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
Line 23: Line 23:
==Inspection and Testing Framework==
==Inspection and Testing Framework==


[[File:Visual indicator bioretention.PNG|thumb|300px|Example of a visual indicator to be used when assessing the condition of a given LID feature. Here we see excessive sediment accumulation at the [[inlet]]/[[curb cut]] of a bioretention cell. Source: (TRCA, 2016).<ref>STEP. 2016. Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide. https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf</ref>.]]
[[File:Grass swale plan view 2005.PNG|thumb|340px|Example of a properly constructed [[vegetated filter strips|Vegetated Filter Strip]], which includes proper vegetation condition, composition coverage that are important visual indicators that will have to be maintained and checked regularly by trained staff. Source: (GVRD, 2005).<ref>Greater Vancouver regional District (GVRD). 2005. Stormwater Source Control
Design Guidelines 2005. Lanarc Consultants Ltd., Kerr Wood Leidal Associates Ltd. and Goya Ngan. April 2005. https://www.waterbucket.ca/rm/sites/wbcrm/documents/media/65.pdf</ref>.]]
{| class="wikitable" style="width: 900px;"
{| class="wikitable" style="width: 900px;"
|+'''Visual Indicators Framework - Vegetated Filter Strips'''
|+'''Visual Indicators Framework - Vegetated Filter Strips'''
Line 107: Line 108:
|}<br>
|}<br>
</br>
</br>
[[File:Soil testing indicators.PNG|thumb|300px|The image above shows a manual soil corer, a split soil core sampler kit which preserves the soil sample for further testing (i.e., bulk density) and acrylic core sample tubes. All examples of tools to be use for soil characterization testing. Source: (TRCA, 2016).<ref>STEP. 2016. Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide. https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf</ref>.]]
[[File:Soil testing indicators.PNG|thumb|340px|The image above shows a manual soil corer, a split soil core sampler kit which preserves the soil sample for further testing (i.e., bulk density) and acrylic core sample tubes. All examples of tools to be use for soil characterization testing. Source: (TRCA, 2016).<ref>STEP. 2016. Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide. https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf</ref>.]]


{| class="wikitable" style="width: 900px;"
{| class="wikitable" style="width: 900px;"

Revision as of 20:58, 11 July 2022

Inspection & Maintenance Guidance of Vegetated filter strips, which are a vegetated stormwater best management practice that are gently sloping, densely vegetated areas that treat runoff as sheet flow from adjacent impervious areas. Similarly, soil amendment areas are any landscaped area where the topsoil has been amended to enhance its water holding capacity (TRCA, 2013[1])

Overview[edit]

Vegetated filter strips (a.k.a. buffer strips and grassed filter strips) are gently sloping, densely vegetated areas that treat runoff as sheet flow from adjacent impervious areas. They slow runoff velocity and filter out suspended sediment and associated pollutants, and provide some infiltration into underlying soils. Originally used as an agricultural treatment practice, filter strips have evolved into an urban SWM practice. Vegetation may be comprised of a variety of trees, shrubs and native plants to add aesthetic value as well as water quality benefits. With proper design and maintenance, filter strips can provide relatively high pollutant removal benefits. Maintaining sheet flow into the filter strip through the use of a level spreading device (e.g., pea gravel diaphragm) is essential. Using vegetated filter strips as pretreatment practices to other best management practices is highly recommended. They also provide a convenient area for snow storage and treatment, and are particularly valuable due to their capacity for snowmelt infiltration.

Properly functioning vegetated filter strips and soil amendment areas reduce the quantity of pollutants and runoff being discharged to municipal storm sewers and receiving waters (i.e., rivers, lakes and wetlands). In addition to their SWM benefits, they provide aesthetic value as attractive landscaped features.

Trash, debris and sediment builds up at these locations and can prevent water from flowing into or out of the practice.

Associated Practices[edit]

  • Grass Swales: A parabolic or trapezoidal-sized bottom, swale that contains grassed sloping sides and a filter media bottom to both convey overland flow and provide water treatment, and are often subject to more frequent maintenance. They generally contain an outlet structure at the lowest point for water to be sent to another LID BMP or the storm system; sometimes referred to as a roadside ditch. Does not contain check dams.
  • Swales: Swales are linear landscape features consisting of a drainage channel with gently sloping sides. Underground they may be filled with engineered soil and/or contain a water storage layer of coarse gravel material. Two variations on a basic swale are recommended as low impact development strategies, although using a combination of both designs may increase the benefit.
  • Bioswales are sometimes referred to as 'dry swales', 'vegetated swales', or 'water quality swales'. This type of BMP is form of bioretention with a long, linear shape (surface area typically >2:1 length:width) and a slope which conveys water and generally contains various water tolerant vegetation.

Inspection and Testing Framework[edit]

Example of a properly constructed Vegetated Filter Strip, which includes proper vegetation condition, composition coverage that are important visual indicators that will have to be maintained and checked regularly by trained staff. Source: (GVRD, 2005).[2].
Visual Indicators Framework - Vegetated Filter Strips

Component

Indicators

Construction Inspection

Assumption Inspection

Routine Operation Inspection

Verification Inspection
Contributing Drainage Area
CDA condition x x x x
Inlet
Inlet/Flow Spreader Structural Integrity x x x
Inlet/Flow Spreader Structural Integrity x x x x
Perimeter
BMP dimensions x x x
Filter Bed
Standing water x x x
Trash x x
Filter bed surface sinking x x x
Planting Area
Vegetation cover x x x x
Vegetation condition x x
Vegetation composition x x x



The image above shows a manual soil corer, a split soil core sampler kit which preserves the soil sample for further testing (i.e., bulk density) and acrylic core sample tubes. All examples of tools to be use for soil characterization testing. Source: (TRCA, 2016).[3].
Testing Indicators Framework - Bioretention/Swales

Component

Indicators

Construction Inspection

Assumption Inspection

Routine Operation Inspection

Verification Inspection
Testing Indicators
Soil characterization testing x x (x)
Surface infiltration rate testing x (x)
Note: (x) denotes indicators to be used for Performance Verification inspections only (i.e., not for Maintenance Verification inspections)
  1. TRCA. 2013. Fact Sheet - LID Manual Master Reference List: Vegetated Filter Strips. https://sustainabletechnologies.ca/app/uploads/2013/01/Vegetated-Filter-Strips.pdf
  2. Greater Vancouver regional District (GVRD). 2005. Stormwater Source Control Design Guidelines 2005. Lanarc Consultants Ltd., Kerr Wood Leidal Associates Ltd. and Goya Ngan. April 2005. https://www.waterbucket.ca/rm/sites/wbcrm/documents/media/65.pdf
  3. STEP. 2016. Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide. https://sustainabletechnologies.ca/app/uploads/2016/08/LID-IM-Guide-2016-1.pdf