Changes

Jump to navigation Jump to search
Line 28: Line 28:
The mean performance value recorded at the outlet for Permeable Pavement practices' ability to remove Total [[Phosphorus]] (TP) was calculated based on 300 separate recordings between 2005-2007, and 2010-2017 amongst the three sites previously mentioned.
The mean performance value recorded at the outlet for Permeable Pavement practices' ability to remove Total [[Phosphorus]] (TP) was calculated based on 300 separate recordings between 2005-2007, and 2010-2017 amongst the three sites previously mentioned.


As can be seen in the corresponding boxplot, the mean performance removal efficiency of the bioretention practices monitored are not meeting the acceptable upper extent range of nutrients as of 0.03 mg/L (30 µg/L) (Environment Canada, 2004<ref name="example1">Environment Canada. (2004). Canadian guidance framework for the management of phosphorus in freshwater systems. Ecosystem Health: Science‐based solutions report no. 1–8. Cat. No. En1–34/8–2004E. </ref>; OMOEE, 1994<ref>Ontario Ministry of Environment and Energy (OMOEE), 1994. Policies, Guidelines and Provincial Water Quality Objectives of the Ministry of Environment and Energy. Queen’s Printer for Ontario. Toronto, ON.</ref>).
As can be seen in the corresponding boxplot, the mean performance removal efficiency of the permeable pavement practices monitored are not meeting the acceptable upper extent range of nutrients as of 0.03 mg/L (30 µg/L) (Environment Canada, 2004<ref name="example1">Environment Canada. (2004). Canadian guidance framework for the management of phosphorus in freshwater systems. Ecosystem Health: Science‐based solutions report no. 1–8. Cat. No. En1–34/8–2004E. </ref>; OMOEE, 1994<ref>Ontario Ministry of Environment and Energy (OMOEE), 1994. Policies, Guidelines and Provincial Water Quality Objectives of the Ministry of Environment and Energy. Queen’s Printer for Ontario. Toronto, ON.</ref>).


The median value of the 355 samples taken was '''0.04 mg/L''' whereas the mean was '''0.08 mg/L''', with a '''62%''' guideline exceedance. Given the age of most of these practices, more inspection, maintenance and necessary rehabilitation will be needed to ensure they are able to meet the federal and provincial governments' guideline requirement for stormwater quality.
The median value of the 355 samples taken was '''0.04 mg/L''' whereas the mean was '''0.08 mg/L''', with a '''62%''' guideline exceedance. Given the age of most of these practices, more inspection, maintenance and necessary rehabilitation will be needed to ensure they are able to meet the federal and provincial governments' guideline requirement for stormwater quality.
Line 36: Line 36:
==Recent Performance Research==
==Recent Performance Research==


*[https://www.waterrf.org/system/files/resource/2020-11/DRPT-4968_0.pdf (Clary et al., 2020) - International Stormwater BMP Database: 2020 Summary Statistics.]
*[https://www.waterrf.org/system/files/resource/2020-11/DRPT-4968_0.pdf International Stormwater BMP Database: 2020 Summary Statistics (Clary et al. 2020)]
**The International Stormwater Best Management Practices (BMP) Database is a publicly accessible repository for BMP performance monitoring study, design, and cost information.  As of December 2019, the BMP Database contains data sets collected over four decades from over 700 BMP studies through the U.S., Canada, Sweden, New Zealand, Australia, China, etc. that are accessible on the project website ([www.bmpdatabase.org]). The performance data for both TSS and TP are as follows within the report:
**The International Stormwater Best Management Practices (BMP) Database is a publicly accessible repository for BMP performance monitoring study, design, and cost information.  As of December 2019, the BMP Database contains data sets collected over four decades from over 700 BMP studies through the U.S., Canada, Sweden, New Zealand, Australia, China, etc. that are accessible on the project website ([www.bmpdatabase.org]). The performance data for both TSS and TP are as follows within the report:
***Median TSS value of outflow/effluent of stormwater from P.P is 22 mg/L in comparison to 77 mg/L influent levels. These levels are computed using the BCa bootstrap method described by Efron and Tibishirani (1993). This value is below the required CWQG levels for TSS in stormwater.
***Median TSS value of outflow/effluent of stormwater from P.P is 22 mg/L in comparison to 77 mg/L influent levels. These levels are computed using the BCa bootstrap method described by Efron and Tibishirani (1993). This value is below the required CWQG levels for TSS in stormwater.
***Median Total phosphorus (TP) value of outflow/effluent of stormwater from P.P is 0.10 mg/L in comparison to 0.17 mg/L influent levels. These levels are computed using the BCa bootstrap method described by Efron and Tibishirani (1993). This value is below the required federal (Environment Canada, 2004) and provincial (OMOEE, 1994) levels for TP in stormwater ((Clary et al., 2020<ref>Clary, J., Jones, J., Leisenring, M., Hobson, P. and Strecker, E. 2020. International stormwater BMP database 2020 summary statistics. Water Environment & Reuse Foundation.</ref>).
***Median Total phosphorus (TP) value of outflow/effluent of stormwater from P.P is 0.10 mg/L in comparison to 0.17 mg/L influent levels. These levels are computed using the BCa bootstrap method described by Efron and Tibishirani (1993). This value is below the required federal (Environment Canada, 2004) and provincial (OMOEE, 1994) levels for TP in stormwater ((Clary et al., 2020<ref>Clary, J., Jones, J., Leisenring, M., Hobson, P. and Strecker, E. 2020. International stormwater BMP database 2020 summary statistics. Water Environment & Reuse Foundation.</ref>).


[[File:BMP mapping tool.PNG|thumb|400px|One of STEP's sites located in Mississauga, ON. (Lakeview Neighbourhood), where P.P was installed in residential driveways. Full submission and details to the BMP can be selected on the map viewer and can be viewed [https://igeowater.com/InternationalBMPDBAssets/PDF/Description/00608--DESCP.pdf here.] (International Stormwater BM<P Database, 2021<ref>International Stormwater BMP Database. 2021. BMP Mapping Tool. Retrieved Feb. 28, 2023. https://bmpdatabase.org/bmp-mapping-tool</ref>).]]
 
[[File:BMP mapping tool.PNG|thumb|500px|One of STEP's sites located in Mississauga, ON. (Lakeview Neighbourhood), where P.P was installed in residential driveways. Full submission and details to the BMP can be selected on the map viewer and can be viewed [https://igeowater.com/InternationalBMPDBAssets/PDF/Description/00608--DESCP.pdf here.] (International Stormwater BM<P Database, 2021<ref>International Stormwater BMP Database. 2021. BMP Mapping Tool. Retrieved Feb. 28, 2023. https://bmpdatabase.org/bmp-mapping-tool</ref>).]]


*[https://www.sciencedirect.com/science/article/abs/pii/S0959652618335376 (Xie, et al. 2019) - Permeable concrete pavements: A review of environmental benefits and durability.]
*[https://www.sciencedirect.com/science/article/abs/pii/S0959652618335376 (Xie, et al. 2019) - Permeable concrete pavements: A review of environmental benefits and durability.]
** This literature review paper looked at a multitude of studies highlighting the numerous benefits (hydraulic/water quality performance, heat-island mitigative effects, skid resistance ability and winter durability) associated with P.P and discussed some prominent papers' results. A project in Yakima, Washington (Yakima County website, 2012<ref>Yakima County website, 2012. Regional Stormwater Management Program, Project. Low Impact Development Demonstration Project. http://www.yakimacounty. us/stormwater/LID/project.htm.</ref>) compared effluent water samples collected in vaults adjacent to two pavement types (permeable and impermeable). The water samples collected from the P.P plot had significantly lower TSS values when compared to the control, impermeable plot's samples (25 mg/L vs. 320 mg/L). Whereas, Luck et al. (2008<ref>Luck, J.D., Workman, S.R., Coyne, M.S. and Higgins, S.F. 2008. Solid material retention and nutrient reduction properties of pervious concrete mixtures. Biosystems engineering, 100(3), pp.401-408.</ref>, 2009<ref>Luck, J.D., Workman, S.R., Coyne, M.S. and Higgins, S.F. 2009. Consequences of manure filtration through pervious concrete during simulated rainfall events. Biosystems Engineering, 102(4), pp.417-423.</ref>) found P.P to exhibit excellent mitigating characteristics for intensive, nearby agricultural practices (composted beef cattle manure) to help limit the amount of soluble phosphorus and total phosphorus in stormwater runoff (Xie, et al. 2019<ref>Xie, N., Akin, M. and Shi, X., 2019. Permeable concrete pavements: A review of environmental benefits and durability. Journal of cleaner production, 210, pp.1605-1621</ref>).
** This literature review paper looked at a multitude of studies highlighting the numerous benefits (hydraulic/water quality performance, heat-island mitigative effects, skid resistance ability and winter durability) associated with P.P and discussed some prominent papers' results. A project in Yakima, Washington (Yakima County website, 2012<ref>Yakima County website, 2012. Regional Stormwater Management Program, Project. Low Impact Development Demonstration Project. http://www.yakimacounty. us/stormwater/LID/project.htm.</ref>) compared effluent water samples collected in vaults adjacent to two pavement types (permeable and impermeable). The water samples collected from the P.P plot had significantly lower TSS values when compared to the control, impermeable plot's samples (25 mg/L vs. 320 mg/L). Whereas, Luck et al. (2008<ref>Luck, J.D., Workman, S.R., Coyne, M.S. and Higgins, S.F. 2008. Solid material retention and nutrient reduction properties of pervious concrete mixtures. Biosystems engineering, 100(3), pp.401-408.</ref>, 2009<ref>Luck, J.D., Workman, S.R., Coyne, M.S. and Higgins, S.F. 2009. Consequences of manure filtration through pervious concrete during simulated rainfall events. Biosystems Engineering, 102(4), pp.417-423.</ref>) found P.P to exhibit excellent mitigating characteristics for intensive, nearby agricultural practices (composted beef cattle manure) to help limit the amount of soluble phosphorus and total phosphorus in stormwater runoff (Xie, et al. 2019<ref>Xie, N., Akin, M. and Shi, X., 2019. Permeable concrete pavements: A review of environmental benefits and durability. Journal of cleaner production, 210, pp.1605-1621</ref>).


*[https://www.sciencedirect.com/science/article/abs/pii/S0043135419308450 (Ostrom and Davis, 2019) - Evaluation of an enhanced treatment media and permeable pavement base to remove stormwater nitrogen, phosphorus, and metals under simulated rainfall.]
*[https://www.sciencedirect.com/science/article/abs/pii/S0043135419308450 (Ostrom and Davis, 2019) - Evaluation of an enhanced treatment media and permeable pavement base to remove stormwater nitrogen, phosphorus, and metals under simulated rainfall.]

Navigation menu