Line 4: |
Line 4: |
|
| |
|
| ==Environmental Impacts== | | ==Environmental Impacts== |
| | [[File:Chloride level LSRCA.PNG|thumb|650px|A graph showing increasing average levels of chloride found in Lake Simcoe, and its watershed's rivers, streams and groundwater systems over the past few decades, due in part to increased use of rock salt in parking lots, roadways and commercial and residential properties. It is estimated that by 2120 the average level of chloride within the the Lake Simcoe watershed will exceed the 120mg/l guideline set by CWQG. (LSRCA, 2018)<ref>LSRCA. 2018. Parking Lot Design Guidelines: Municipal Policy Templates to Promote Salt Reduction in Parking Lots. https://www.lsrca.on.ca/Shared%20Documents/Parking-Lot-Design-Guidelines/Parking%20Lot%20Design%20Guidelines.pdf.</ref>]] |
|
| |
|
| Salt contamination in freshwater (freshwater salinization) is a major concern to Ontarians wellbeing as it can lead to: | | Salt contamination in freshwater (freshwater salinization) is a major concern to Ontarians wellbeing as it can lead to: |
Line 10: |
Line 11: |
| *Health issues for those who have experienced congestive heart failure | | *Health issues for those who have experienced congestive heart failure |
| *Impacts to those with sodium restricted diets | | *Impacts to those with sodium restricted diets |
| [[File:Chloride level LSRCA.PNG|thumb|650px|A graph showing increasing average levels of chloride found in Lake Simcoe, and its watershed's rivers, streams and groundwater systems over the past few decades, due in part to increased use of rock salt in parking lots, roadways and commercial and residential properties. It is estimated that by 2120 the average level of chloride within the the Lake Simcoe watershed will exceed the 120mg/l guideline set by CWQG. (LSRCA, 2018)<ref>LSRCA. 2018. Parking Lot Design Guidelines: Municipal Policy Templates to Promote Salt Reduction in Parking Lots. https://www.lsrca.on.ca/Shared%20Documents/Parking-Lot-Design-Guidelines/Parking%20Lot%20Design%20Guidelines.pdf.</ref>]]
| |
|
| |
|
| Furthermore, salt can contribute to both biodiversity and habitat loss for numerous species. In Ontario, road salt was identified as one of the threats to drinking water under the Clean Water Act, 2006 - as well as a known toxin to wildlife species<ref>Government of Ontario. 2006. Clean Water Act, 2006, S.O. 2006, c. 22. https://www.ontario.ca/laws/statute/06c22.</ref>. Salt can impacts bird species, many plants and trees growth ability, and decrease size, function and fecundify in fish, mollusks (snail, mussels, etc.), amphibians and benthic invertebrate species. | | Furthermore, salt can contribute to both biodiversity and habitat loss for numerous species. In Ontario, road salt was identified as one of the threats to drinking water under the Clean Water Act, 2006 - as well as a known toxin to wildlife species<ref>Government of Ontario. 2006. Clean Water Act, 2006, S.O. 2006, c. 22. https://www.ontario.ca/laws/statute/06c22.</ref>. Salt can impacts bird species, many plants and trees growth ability, and decrease size, function and fecundify in fish, mollusks (snail, mussels, etc.), amphibians and benthic invertebrate species. |
Line 23: |
Line 23: |
|
| |
|
| ===CCME Guidelines on Salt's Impact to Environment=== | | ===CCME Guidelines on Salt's Impact to Environment=== |
| | |
| The [https://sustainabletechnologies.ca/app/uploads/2014/05/CWQG_chlorides.pdf Chloride - Canadian Water Quality Guidelines for the Protection of Aquatic Life]<ref>Canadian Council of Ministers of the Environment. 2011. Canadian water quality guidelines for the protection of aquatic life: Chloride. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. https://sustainabletechnologies.ca/app/uploads/2014/05/CWQG_chlorides.pdf</ref> document from the Canadian Council of Ministers of the Environment (CCME) is another valuable paper that discusses the direct toxic effects of chloride, based on studies using NaCl and CaCl<sup>2</sup> salts. The guideline can be used as a screening and management tool to ensure that chloride does not lead to the degradation of the aquatic environment. Further guidance on the application of these guidelines is provided in the scientific criteria document (CCME 2011), which can be found here - [https://www.ccme.ca/fr/res/2011-chloride-ceqg-scd-1460-en.pdf Scientific Criteria Document - Cl Ion]. The scientific criteria document goes into detail about the following related to chloride levels in the environment: | | The [https://sustainabletechnologies.ca/app/uploads/2014/05/CWQG_chlorides.pdf Chloride - Canadian Water Quality Guidelines for the Protection of Aquatic Life]<ref>Canadian Council of Ministers of the Environment. 2011. Canadian water quality guidelines for the protection of aquatic life: Chloride. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. https://sustainabletechnologies.ca/app/uploads/2014/05/CWQG_chlorides.pdf</ref> document from the Canadian Council of Ministers of the Environment (CCME) is another valuable paper that discusses the direct toxic effects of chloride, based on studies using NaCl and CaCl<sup>2</sup> salts. The guideline can be used as a screening and management tool to ensure that chloride does not lead to the degradation of the aquatic environment. Further guidance on the application of these guidelines is provided in the scientific criteria document (CCME 2011), which can be found here - [https://www.ccme.ca/fr/res/2011-chloride-ceqg-scd-1460-en.pdf Scientific Criteria Document - Cl Ion]. The scientific criteria document goes into detail about the following related to chloride levels in the environment: |
| | [[File:Wood Frog (Rana sylvatica) (6236874620).png|thumb|450px|A study by researchers at Yale and Rensselaer Polytechnic Institute, in NY found the interactive effects of road salt on wood frog species' sex ratios and sexual size dimorphism. Over a series of experiments conducted, the authors of the paper in the Canadian Journal of Fisheries and Aquatic Sciences discovered that the number of females within the studied population of tadpoles decreased by ~10% when exposed to road salt. These findings suggest road salt may have a 'masculizing effect' on various amphibian species.<ref>Lambert, M.R., Stoler, A.B., Smylie, M.S., Relyea, R.A. and Skelly, D.K. 2017. Interactive effects of road salt and leaf litter on wood frog sex ratios and sexual size dimorphism. Canadian Journal of Fisheries and Aquatic Sciences, 74(2), pp.141-146. https://tspace.library.utoronto.ca/bitstream/1807/74970/1/cjfas-2016-0324.pdf</ref>]] |
| | |
| *Aquatic sources and fate | | *Aquatic sources and fate |
| *Ambient concentration in Canadian waters, sediment and soils | | *Ambient concentration in Canadian waters, sediment and soils |
Line 33: |
Line 36: |
| *Other Impacts | | *Other Impacts |
| **Mutations / Bioaccumulation / Dermal Effects / Taste and odour of water and fish | | **Mutations / Bioaccumulation / Dermal Effects / Taste and odour of water and fish |
|
| |
| [[File:Wood Frog (Rana sylvatica) (6236874620).png|thumb|600|A study by researchers at Yale and Rensselaer Polytechnic Institute, in NY found the interactive effects of road salt on wood frog species' sex ratios and sexual size dimorphism. Over a series of experiments conducted, the authors of the paper in the Canadian Journal of Fisheries and Aquatic Sciences discovered that the number of females within the studied population of tadpoles decreased by ~10% when exposed to road salt. Meaning that road salt may have a 'masculizing effect' on various amphibian species.<ref>Lambert, M.R., Stoler, A.B., Smylie, M.S., Relyea, R.A. and Skelly, D.K. 2017. Interactive effects of road salt and leaf litter on wood frog sex ratios and sexual size dimorphism. Canadian Journal of Fisheries and Aquatic Sciences, 74(2), pp.141-146. https://tspace.library.utoronto.ca/bitstream/1807/74970/1/cjfas-2016-0324.pdf</ref>]]
| |
|
| |
|
| ===Recent Local Findings=== | | ===Recent Local Findings=== |