Changes

Jump to navigation Jump to search
856 bytes removed ,  2 years ago
Line 101: Line 101:
[[File:Sand accumulated road.PNG|thumb|250px|Sand accumulates on the ride of the road after being applied after a snowfall event. Sand can travel into nearby watercourses, wetlands, and increases clean-up associated costs for the municipality. Photo source: [https://sustainabletechnologies.ca/app/uploads/2020/03/Sand-vs-Salt-tech-brief.pdf LSRCA, 2018.]<ref>LSRCA. 2018. Sand versus Salt: Should sand be used for winter maintenance? Technical Bulletin, Volume 1 October 2018. https://sustainabletechnologies.ca/app/uploads/2020/03/Sand-vs-Salt-tech-brief.pdf</ref>]]
[[File:Sand accumulated road.PNG|thumb|250px|Sand accumulates on the ride of the road after being applied after a snowfall event. Sand can travel into nearby watercourses, wetlands, and increases clean-up associated costs for the municipality. Photo source: [https://sustainabletechnologies.ca/app/uploads/2020/03/Sand-vs-Salt-tech-brief.pdf LSRCA, 2018.]<ref>LSRCA. 2018. Sand versus Salt: Should sand be used for winter maintenance? Technical Bulletin, Volume 1 October 2018. https://sustainabletechnologies.ca/app/uploads/2020/03/Sand-vs-Salt-tech-brief.pdf</ref>]]


Further detailed analysis of the performance of varying de-icer agents can be found in STEP's earlier technical brief entitled, [https://sustainabletechnologies.ca/app/uploads/2015/11/AlternativeSalt_TechBrief_Nov2015.pdf Evaluation of Organic Anti-icing Materials for Winter Maintenance]. <ref>STEP. 2015. Evaluation of Organic Anti-icing Materials for Winter Maintenance. Technical Brief. Salt Management. https://sustainabletechnologies.ca/app/uploads/2015/11/AlternativeSalt_TechBrief_Nov2015.pdf</ref>. This study compares the performance of liquid road salt (brine) to three types of organic/semi-organic alternatives applied on a university parking lot in Waterloo, Ontario. Products are evaluated as anti-icers (applied pre-snowfall) based on the coefficient of friction (CoF). The results indicate that in general, anti-icing treatments improved friction levels by 10-40% relative to a control without any application of anti-icers. Despite containing less chloride, the organic and semi-organic products performed as well as traditional sodium chloride brine at similar application rates. Although organic anti-icers contributed less chloride into receiving streams, they contain higher concentrations of nutrients and organic content, which may limit their applicability in some context. To read more about these salt alternatives click the link above.
Further detailed analysis of the performance of varying de-icer agents can be found in STEP's earlier technical brief entitled, [https://sustainabletechnologies.ca/app/uploads/2015/11/AlternativeSalt_TechBrief_Nov2015.pdf Evaluation of Organic Anti-icing Materials for Winter Maintenance]. <ref>STEP. 2015. Evaluation of Organic Anti-icing Materials for Winter Maintenance. Technical Brief. Salt Management. https://sustainabletechnologies.ca/app/uploads/2015/11/AlternativeSalt_TechBrief_Nov2015.pdf</ref>.


===Sand===
===Sand===

Navigation menu