Line 644: |
Line 644: |
|
| |
|
| ===Flood Tests=== | | ===Flood Tests=== |
| Flood tests for detection of green roof leaks can be conducted as part of Construction inspections, prior to planting. The test requires an experienced professional to narrow down a small area where the leak may be originating from. The suspected area is isolated from the rest of the roof, the roof drains are plugged, 10 cm of water depth is introduced and observations are made. Once the leak is found, the area is opened up and the waterproofing membrane is repaired. This process is time-consuming and costly, as the leak is not always found during the first round of patch flooding (US GSA, 2011)<ref>United States General Services Administration (US GSA). 2011. The Benefits and Challenges of Green Roofs on Public and Commercial Buildings. 140 pp. https://www.gsa.gov/cdnstatic/The_Benefits_and_Challenges_of_Green_Roofs_on_Public_and_Commercial_Buildings.pdf</ref> | | Flood tests for detection of green roof leaks can be conducted as part of Construction inspections, prior to planting. The test requires an experienced professional to narrow down a small area where the leak may be originating from. The suspected area is isolated from the rest of the roof, the roof drains are plugged, 10 cm of water depth is introduced and observations are made. Once the leak is found, the area is opened up and the waterproofing membrane is repaired. This process is time-consuming and costly, as the leak is not always found during the first round of patch flooding (US GSA, 2011)<ref name="example6">United States General Services Administration (US GSA). 2011. The Benefits and Challenges of Green Roofs on Public and Commercial Buildings. 140 pp. https://www.gsa.gov/cdnstatic/The_Benefits_and_Challenges_of_Green_Roofs_on_Public_and_Commercial_Buildings.pdf</ref> |
|
| |
|
| ===Low-Voltage Leak Tests=== | | ===Low-Voltage Leak Tests=== |
| The low-voltage leak detection test utilizes electricity to locate water penetrations through the waterproofing membrane. Such leak detection systems can also be referred to as Electric Field Vector Mapping (EFVM®) systems. They require a grounded, conductive material be directly below the waterproofing membrane, such as reinforced concrete or metal, and that the membrane be a nonconductive material. During roof construction and prior to green roof installation, a conductive wire is looped around the surface of the waterproofing membrane and connected to an impulse generator. | | The low-voltage leak detection test utilizes electricity to locate water penetrations through the waterproofing membrane. Such leak detection systems can also be referred to as Electric Field Vector Mapping (EFVM®) systems. They require a grounded, conductive material be directly below the waterproofing membrane, such as reinforced concrete or metal, and that the membrane be a nonconductive material. During roof construction and prior to green roof installation, a conductive wire is looped around the surface of the waterproofing membrane and connected to an impulse generator. |
|
| |
|
| Testing involves the inspector or leak detection technician introducing a low-voltage, pulsating electric charge onto the surface of the waterproofing membrane which should be moist at the time. A watertight membrane will isolate the potential difference between the wetted surface and the underlying grounded conductive material layer, while breaches in the membrane will cause an electrical connection to occur. The inspector or leak detection technician reads the directional flow of current with a potentiometer to locate the point of entry with pinpoint accuracy. Low-voltage leak detection tests can be performed before and after a green roof is installed. As such, the location of leaks can be very precisely located and repaired with minimal disturbance to the rest of the roof (US GSA, 2011). | | Testing involves the inspector or leak detection technician introducing a low-voltage, pulsating electric charge onto the surface of the waterproofing membrane which should be moist at the time. A watertight membrane will isolate the potential difference between the wetted surface and the underlying grounded conductive material layer, while breaches in the membrane will cause an electrical connection to occur. The inspector or leak detection technician reads the directional flow of current with a potentiometer to locate the point of entry with pinpoint accuracy. Low-voltage leak detection tests can be performed before and after a green roof is installed. As such, the location of leaks can be very precisely located and repaired with minimal disturbance to the rest of the roof (US GSA, 2011)<ref name="example5 /">. |
|
| |
|
| ===Testing & Inspection Types=== | | ===Testing & Inspection Types=== |