Changes

Jump to navigation Jump to search
Line 416: Line 416:
*For all permeable pavement design variations, the CDA has been defined as 2,000 m<sup>2</sup> of which 1,000 m<sup>2</sup>  is impermeable pavement draining to the pavers, and 1,000 m<sup>2</sup> is permeable pavement. The impervious area to pervious area ratio (I:P ratio) used to size the BMP footprint is 1:1, which is in accordance with recommendations in the [https://sustainabletechnologies.ca/app/uploads/2013/01/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf LID SWM Planning and Design Guide (CVC & TRCA, 2010)].
*For all permeable pavement design variations, the CDA has been defined as 2,000 m<sup>2</sup> of which 1,000 m<sup>2</sup>  is impermeable pavement draining to the pavers, and 1,000 m<sup>2</sup> is permeable pavement. The impervious area to pervious area ratio (I:P ratio) used to size the BMP footprint is 1:1, which is in accordance with recommendations in the [https://sustainabletechnologies.ca/app/uploads/2013/01/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf LID SWM Planning and Design Guide (CVC & TRCA, 2010)].
**The Full Infiltration design does not include a sub-drain and assumes a native sub-soil infiltration rate of 20 mm/h. The base granular reservoir is 350 mm deep and is capable of storing runoff from a 61 mm rain event over the CDA. A monitoring well is included for inspection purposes.  
**The Full Infiltration design does not include a sub-drain and assumes a native sub-soil infiltration rate of 20 mm/h. The base granular reservoir is 350 mm deep and is capable of storing runoff from a 61 mm rain event over the CDA. A monitoring well is included for inspection purposes.  
**The Partial Infiltration design includes a sub-drain and assumes a native sub-soil infiltration rate of 10 mm/h. The base granular reservoir is 350 mm deep and is capable of storing runoff from a 9 mm rain event before
**The Partial Infiltration design includes a sub-drain and assumes a native sub-soil infiltration rate of 10 mm/h. The base granular reservoir is 350 mm deep and is capable of storing runoff from a 9 mm rain event before the stored volume reaches the perforated underdrain pipe located 50 mm above the native sub-soil. Although a flow restrictor is recommended to maximize infiltration, the cost of this feature is not included due to its relatively low cost.  
the stored volume reaches the perforated underdrain pipe located 50 mm above the native sub-soil. Although a flow restrictor is recommended to maximize infiltration, the cost of this feature is not included due to its relatively low cost.  
**The No Infiltration design includes a sub-drain pipe installed on the bottom of the sub-surface water storage reservoir and an impermeable liner. All other features are the same as the Partial Infiltration design variation.  
**The No Infiltration design includes a sub-drain pipe installed on the bottom of the sub-surface water storage reservoir and an impermeable liner. All other features are the same as the Partial Infiltration design variation.  
*Estimates of the life cycle costs of PICP permeable pavements in Canadian dollars per unit CDA ($/m<sup>2</sup>) are presented in the table below. [[Cost analysis resources|LID Life Cycle Costing Tool]] allows users to select what BMP type and design variation applies, and to use the default assumptions to generate planning level cost estimates.
*Estimates of the life cycle costs of PICP permeable pavements in Canadian dollars per unit CDA ($/m<sup>2</sup>) are presented in the table below. [[Cost analysis resources|LID Life Cycle Costing Tool]] allows users to select what BMP type and design variation applies, and to use the default assumptions to generate planning level cost estimates.

Navigation menu