Changes

Jump to navigation Jump to search
Line 42: Line 42:
***Median Total phosphorus (TP) value of outflow/effluent of stormwater from P.P is 0.10 mg/L in comparison to 0.17 mg/L influent levels. These levels are computed using the BCa bootstrap method described by Efron and Tibishirani (1993). This value is below the required federal (Environment Canada, 2004) and provincial (OMOEE, 1994) levels for TP in stormwater ((Clary et al., 2020<ref>Clary, J., Jones, J., Leisenring, M., Hobson, P. and Strecker, E. 2020. International stormwater BMP database 2020 summary statistics. Water Environment & Reuse Foundation.</ref>).
***Median Total phosphorus (TP) value of outflow/effluent of stormwater from P.P is 0.10 mg/L in comparison to 0.17 mg/L influent levels. These levels are computed using the BCa bootstrap method described by Efron and Tibishirani (1993). This value is below the required federal (Environment Canada, 2004) and provincial (OMOEE, 1994) levels for TP in stormwater ((Clary et al., 2020<ref>Clary, J., Jones, J., Leisenring, M., Hobson, P. and Strecker, E. 2020. International stormwater BMP database 2020 summary statistics. Water Environment & Reuse Foundation.</ref>).


*[https://www.eeer.org/upload/eer-14-4-262-.pdf (Jianghua, et al. 2009) - Performance Analysis of a Hydrodynamic Separator for Treating Particulate Pollutants in Highway Rainfall Runoff.]
*[https://www.sciencedirect.com/science/article/abs/pii/S0959652618335376 (Xie, et al. 2019) - Permeable concrete pavements: A review of environmental benefits and durability.]
** This study examined the separation characteristics of particles in runoff from paved roads using a OGS hydro cyclone design. The results indicated the TSS concentration ratio between the overflow and inflow (TSSover/in) decreased as a function of the operational pressure and the particle removal efficiency was mainly affected by the particle size. By using highway runoff results showed that removal efficiency was greater than 60%. The TSSover/in was (0.26 mg/L – 0.41 mg/L) below the Canadian Water Quality Guidelines (CWQGs) (Jianghua, et al. 2009<ref>Jianghua, Y., Qitao, Y. and Kim, Y. 2009. Performance analysis of a hydrodynamic separator for treating particulate pollutants in highway rainfall runoff. Environmental Engineering Research, 14(4), pp.262-269. https://www.eeer.org/upload/eer-14-4-262-.pdf</ref>).
** This literature review paper looked at a multitude of studies highlighting the numerous benefits (hydraulic/water quality performance, heat-island mitigative effects, skid resistance ability and winter durability) associated with P.P and discussed some prominent papers' results. A project in Yakima, Washington (Yakima County website, 2012<ref>Yakima County website, 2012. Regional Stormwater Management Program, Project. Low Impact Development Demonstration Project. http://www.yakimacounty. us/stormwater/LID/project.htm.</ref>) compared effluent water samples collected in vaults adjacent to two pavement types (permeable and impermeable). The water samples collected from the P.P plot had significantly lower TSS values when compared to the control, impermeable plot's samples (25 mg/L vs. 320 mg/L). Whereas, Luck et al. (2008<ref>Luck, J.D., Workman, S.R., Coyne, M.S. and Higgins, S.F. 2008. Solid material retention and nutrient reduction properties of pervious concrete mixtures. Biosystems engineering, 100(3), pp.401-408.</ref>, 2009<ref>Luck, J.D., Workman, S.R., Coyne, M.S. and Higgins, S.F. 2009. Consequences of manure filtration through pervious concrete during simulated rainfall events. Biosystems Engineering, 102(4), pp.417-423.</ref>) found P.P to exhibit excellent mitigating characteristics for intensive, nearby agricultural practices (composted beef cattle manure) to help limit the amount of soluble phosphorus and total phosphorus in stormwater runoff (Xie, et al. 2019<ref>Xie, N., Akin, M. and Shi, X., 2019. Permeable concrete pavements: A review of environmental benefits and durability. Journal of cleaner production, 210, pp.1605-1621</ref>).
 
 


*[https://pubmed.ncbi.nlm.nih.gov/24845330/ (Lee, et al. 2014) - Performance evaluation and a sizing method for hydrodynamic separators treating urban stormwater runoff.]
*[https://pubmed.ncbi.nlm.nih.gov/24845330/ (Lee, et al. 2014) - Performance evaluation and a sizing method for hydrodynamic separators treating urban stormwater runoff.]

Navigation menu