| Many green roofs receive only rainwater, which is relatively free of contaminants like nutrients and heavy metals, but can contribute contaminants to roof runoff, most notably through leaching of [[Nutrients]] from the growing medium substrate during early establishment.<ref>Vijayaraghavan, K., Harkishore Kumar Reddy, D., Yun, Y. 2018. Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustainable Cities and Society. 46 (2019) 101381. https://www.sciencedirect.com/science/article/abs/pii/S2210670718319383?via%3Dihub</ref> Reported values of Total [[Phosphorus]] in green roof runoff have been observed to vary from less than 0.1 ppm to over 10 ppm. | | Many green roofs receive only rainwater, which is relatively free of contaminants like nutrients and heavy metals, but can contribute contaminants to roof runoff, most notably through leaching of [[Nutrients]] from the growing medium substrate during early establishment.<ref>Vijayaraghavan, K., Harkishore Kumar Reddy, D., Yun, Y. 2018. Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustainable Cities and Society. 46 (2019) 101381. https://www.sciencedirect.com/science/article/abs/pii/S2210670718319383?via%3Dihub</ref> Reported values of Total [[Phosphorus]] in green roof runoff have been observed to vary from less than 0.1 ppm to over 10 ppm.<ref>Hill J., Drake J., Sleep B., Margolis L. 2017. Influences of Four Extensive Green Roof Design Variables on Stormwater Hydrology. J Hydrol Eng. 2017;22(8):04017019. doi:10.1061/(ASCE)HE.1943-5584.0001534</ref>. |