Changes

Jump to navigation Jump to search
Line 86: Line 86:

===3. Treatment trains designed to enhance overall treatment system performance===
===3. Treatment trains designed to enhance overall treatment system performance===
[[File:Storm bmps rev3.png|thumb|500px|An example of a treatment train approach used to enhance treatment performance in an area with limited surface area due to parking and the adjacent municipal roadway. In this example water is able to be collected and then conveyed from a [[green roof]] system, a [[bioswale]] and [[permeable pavement]] parking lot, through an [[OGS|oil and grit separator]] and then to an [[Infiltration chamber]] or an underground [[cistern]] tank. Clean water can then be reused onsite or overflow out to the municipal storm sewer and receiving waterbody (City of Saskatoon, 2023).<ref>City of Saskatoon. 2023. Storm Water Management Credit Program. Image courtesy of the City of Mississauga. Accessed: https://www.saskatoon.ca/services-residents/power-water-sewer/storm-water/storm-water-management-credit-program</ref>]]
The design intent of these treatment trains is to enhance overall system performance.  The previous category of treatment train may enhance performance, but the objective may not always be to address a broader range of stormwater criteria.   
The design intent of these treatment trains is to enhance overall system performance.  The previous category of treatment train may enhance performance, but the objective may not always be to address a broader range of stormwater criteria.   


Line 91: Line 93:

'''Performance calculation''':  In the example above, the [[bioretention]] facility would provide water quality load reductions through filtration (water quality concentration reductions) and infiltration (volume reductions).  Since the second facility would receive effluent from the [[underdrain]] of the bioretention, no further reduction in TSS concentrations would be expected (ie. the TSS concentration would already be at the ‘irreducible’ level) (Schueler, 2000)<ref>Schueler, T.  2000.  Irreducible Pollutant Concentration Discharged from Stormwater Practices.  Technical Note #75, In Watershed Protection Techniques. 2(2), 369-372, Centre for Watershed Protection. Accessed: https://owl.cwp.org/mdocs-posts/elc_pwp65/</ref>.  The TSS water quality load would be reduced in the second facility only by further reductions in volumes through infiltration.  If the parameter of interest was total [[phosphorus]] (TP) rather than TSS, there is the potential that the second facility may further reduce TP through filtration/adsorption, especially if the second facility contained [[Sorbtive media|reactive media]] designed to remove phosphorus.
'''Performance calculation''':  In the example above, the [[bioretention]] facility would provide water quality load reductions through filtration (water quality concentration reductions) and infiltration (volume reductions).  Since the second facility would receive effluent from the [[underdrain]] of the bioretention, no further reduction in TSS concentrations would be expected (ie. the TSS concentration would already be at the ‘irreducible’ level) (Schueler, 2000)<ref>Schueler, T.  2000.  Irreducible Pollutant Concentration Discharged from Stormwater Practices.  Technical Note #75, In Watershed Protection Techniques. 2(2), 369-372, Centre for Watershed Protection. Accessed: https://owl.cwp.org/mdocs-posts/elc_pwp65/</ref>.  The TSS water quality load would be reduced in the second facility only by further reductions in volumes through infiltration.  If the parameter of interest was total [[phosphorus]] (TP) rather than TSS, there is the potential that the second facility may further reduce TP through filtration/adsorption, especially if the second facility contained [[Sorbtive media|reactive media]] designed to remove phosphorus.


===4. Treatment trains designed to optimize treatment facility sizing through flow control===
===4. Treatment trains designed to optimize treatment facility sizing through flow control===

Navigation menu