Changes

Jump to navigation Jump to search
m
no edit summary
Line 65: Line 65:
|}
|}


The void ratios above were estimated based on the coefficient of uniformity (C<sub>U</sub>)<ref>Vuković, Milan and Soro, Andjelko Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, Colo, 1992.</ref><ref>Odong, J. (2007). Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. Journal of American Science, 3(3). Retrieved from http://www.jofamericanscience.org/journals/am-sci/0303/10-0284-Odong-Evaluation-am.pdf</ref><ref>Zhang, S. (2017). Relationship between Particle Size Distribution and Porosity in Dump Leaching. the University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0357233</ref>:
Void ratios were calculated based on the coefficient of uniformity (''C<sub>U</sub>'')<ref>Vuković, Milan and Soro, Andjelko Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, Colo, 1992.</ref><ref>Odong, J. (2007). Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. Journal of American Science, 3(3). Retrieved from http://www.jofamericanscience.org/journals/am-sci/0303/10-0284-Odong-Evaluation-am.pdf</ref><ref>Zhang, S. (2017). Relationship between Particle Size Distribution and Porosity in Dump Leaching. the University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0357233</ref>:
<math>V_{R}=0.255\left ( 1+0.83^{C_{U}} \right )</math>
<math>V_{R}=0.255\left ( 1+0.83^{C_{U}} \right )</math>
Where coefficient of uniformity is the ratio of the 60th and 10th percentile grain sizes:
Where coefficient of uniformity is the ratio of the 60th and 10th percentile grain sizes:

Navigation menu