Changes

Jump to navigation Jump to search
Line 462: Line 462:



Performance results from both laboratory and field studies indicate that bioretention systems have the potential to be one of the most effective BMPs for pollutant removal ([https://sustainabletechnologies.ca/app/uploads/2014/10/SW_Infiltration-Review_10.15.2014.pdf TRCA, 2009]). Bioretention provides effective removal for many pollutants as a result of sedimentation, filtering, soil adsorption, microbial processes and plant uptake. It is also important to note that there is a relationship between the water balance and water quality functions. If a bioretention cell infiltrates and evaporates 100% of the runoff from a site, then there is essentially no pollution leaving the site in surface runoff. Furthermore, treatment of infiltrated runoff continues to occur as it moves through the native soil.  
Performance results from both laboratory and field studies indicate that bioretention systems have the potential to be one of the most effective BMPs for pollutant removal ([https://sustainabletechnologies.ca/app/uploads/2014/10/SW_Infiltration-Review_10.15.2014.pdf TRCA, 2009]). Bioretention provides effective removal for many pollutants as a result of sedimentation, filtering, soil adsorption, microbial processes and plant uptake. It is also important to note that there is a relationship between the water balance and water quality functions. If a bioretention cell infiltrates and evaporates 85 to 100% of the runoff from the drainage area during the design storm event, then there is little to no pollution leaving the site in surface runoff. Furthermore, treatment of infiltrated runoff continues to occur as it moves through the native soil.  


A comparative performance assessment of bioretention in Ontario was conducted comparing 9 different bioretention facilities in the GTA. The results showed total suspended solids (TSS) concentration reductions between 73 to 99%. [https://sustainabletechnologies.ca/app/uploads/2019/10/STEP_Bioretention-Synthesis_Tech-Brief-New-Template-2019-Oct-10.-2019.pdf (STEP, 2019)]<ref>STEP. 2019. Comparative Performance Assessment of Bioretention in Ontario - Technical Brief.</ref>. Other STEP studies in the Greater Toronto Area have displayed similar results, with 90% reduction in TSS when compared to nearby asphalt runoff samples having median TSS concentrations below the provincial 30 mg/L standard (median = ~19 mg/L) [https://sustainabletechnologies.ca/app/uploads/2015/01/ER-Bio-Tech-Brief-Final.pdf STEP, 2014]<ref>STEP. 2014. Performance Evaluation of a Bioretention System - Earth Rangers. Prepared by Toronto and Region Conservation. September 2014. https://sustainabletechnologies.ca/app/uploads/2014/09/STEP-Bioretention-Report_2014.pdf</ref>.
A comparative performance assessment of bioretention in Ontario was conducted comparing 9 different bioretention facilities in the GTA. The results showed total suspended solids (TSS) load reductions between 88 to 99%, and total phosphorus load reductions between 68 and 92% for unlined facilities. Results for a lined bioretention swale for TSS and Total Phosphorus load reduction were 73 to 79% and -18 to -21% respectively.[https://sustainabletechnologies.ca/app/uploads/2019/10/STEP_Bioretention-Synthesis_Tech-Brief-New-Template-2019-Oct-10.-2019.pdf (STEP, 2019)]<ref>STEP. 2019. Comparative Performance Assessment of Bioretention in Ontario - Technical Brief.</ref>.  Negative TP load reduction values were observed because effluent concentrations were higher than influent concentrations, and volume reduction through evapotranspiration was not sufficient to offset the increase in phosphorus concentration in biofilter effluent. [https://sustainabletechnologies.ca/app/uploads/2020/11/CC-Bioswale-Tech-brief-2018-FINAL.pdf (STEP, 2018)]<ref> Sustainable Technologies Evaluation Program. 2018. Effectiveness of Retrofitted Roadside Biofilter Swales - County Court Boulevard, Brampton Technical Brief. https://sustainabletechnologies.ca/app/uploads/2020/11/CC-Bioswale-Tech-brief-2018-FINAL.pdf </ref>. Other STEP studies in the Greater Toronto Area have displayed similar results, with 90% reduction in TSS load when compared to nearby asphalt runoff samples having median TSS concentrations near the provincial 30 mg/L standard (median = ~19 mg/L) [https://sustainabletechnologies.ca/app/uploads/2015/01/ER-Bio-Tech-Brief-Final.pdf STEP, 2014] <ref>Sustainable Technologies Evaluation Program. 2014. Performance Evaluation of a Bioretention System - Earth Rangers. Prepared by Toronto and Region Conservation. September 2014. https://sustainabletechnologies.ca/app/uploads/2014/09/STEP-Bioretention-Report_2014.pdf</ref>.


Another group of studies of bioretention facilities examines nutrient removal of these LID installation, with mixed results. Some facilities have been observed to increase total phosphorus in infiltrated water (Dietz and Clausen, 2005<ref>Dietz, M.E. and J.C. Clausen. 2005. A field evaluation of rain garden flow and pollutant treatment. Water Air and Soil Pollution. Vol. 167. No. 2. pp. 201-208.</ref>; Hunt ''et al''., 2006<ref>Hunt, W.F. and W.G. Lord. 2006. Bioretention Performance, Design, Construction, and Maintenance. North Carolina Cooperative Extension Service Bulletin. Urban Waterways Series. AG-588-5. North Carolina State University. Raleigh, NC</ref> ; TRCA, 2008<ref>. Performance Evaluation of Permeable Pavement and a Bioretention Swale, Seneca College, King City, Ontario. Prepared under the Sustainable Technologies Evaluation Program (STEP). Toronto, Ontario. </ref>). These findings have been attributed to leaching from filter media soil mixtures which contained high phosphorus content. To avoid phosphorus export, the phosphorus content (i.e., Phosphorus Index) of the filter media soil mixture should be examined prior to installation and kept between 10 to 30 ppm (Hunt and Lord, 2006<ref>Hunt, W.F. and W.G. Lord. 2006. Bioretention Performance, Design, Construction, and Maintenance. North Carolina Cooperative Extension Service Bulletin. Urban Waterways Series. AG-588-5. North Carolina State University. Raleigh, NC</ref>). While moderate reductions in total nitrogen and ammonia nitrogen have been observed in laboratory studies (Davis ''et al''., 2001<ref>Davis, A., M. Shokouhian, H. Sharma and C. Minami. 2001. Laboratory Study of Biological Retention for Urban Stormwater Management. Water Environment Research. 73(5): 5-14.</ref>) and field studies (Dietz and Clausen, 2005<ref>Dietz, M.E. and J.C. Clausen. 2005. A field evaluation of rain garden flow and pollutant treatment. Water Air and Soil Pollution. Vol. 167. No. 2. pp. 201-208.</ref>), nitrate nitrogen has consistently been observed to be low. Little data exists on the ability of bioretention to reduce bacteria concentrations, but preliminary laboratory and field study results report good removal rates for fecal coliform bacteria (Rusciano and Obropta, 2005; Hunt ''et al''., 2006<ref>Hunt, W.F., A.R. Jarrett, J.T. Smith, and L.J. Sharkey. 2006. Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. ASCE Journal of Irrigation and Drainage Engineering. 132(6): 600-608.</ref>; TRCA, 2008<ref>. Performance Evaluation of Permeable Pavement and a Bioretention Swale, Seneca College, King City, Ontario. Prepared under the Sustainable Technologies Evaluation Program (STEP). Toronto, Ontario.</ref>).
Another group of studies of bioretention facilities examines nutrient removal of these LID installation, with mixed results. Some facilities have been observed to increase total phosphorus in infiltrated water (Dietz and Clausen, 2005<ref>Dietz, M.E. and J.C. Clausen. 2005. A field evaluation of rain garden flow and pollutant treatment. Water Air and Soil Pollution. Vol. 167. No. 2. pp. 201-208.</ref>; Hunt and Lord, 2006<ref>Hunt, W.F. and W.G. Lord. 2006. Bioretention Performance, Design, Construction, and Maintenance. North Carolina Cooperative Extension Service Bulletin. Urban Waterways Series. AG-588-5. North Carolina State University. Raleigh, NC</ref> ; TRCA, 2008<ref>. Toronto and Region Conservation Authority. 2008. Performance Evaluation of Permeable Pavement and a Bioretention Swale, Seneca College, King City, Ontario. Prepared under the Sustainable Technologies Evaluation Program (STEP). Toronto, Ontario. https://sustainabletechnologies.ca/app/uploads/2013/03/PP_FactsheetSept2011-compressed.pdf</ref>). These findings have been attributed to leaching from filter media soil mixtures which contained high phosphorus content. To avoid phosphorus export, the plant-available (extractable) phosphorus content of the filter media soil mixture should be examined prior to installation and kept between 12 to 40 ppm (see [[Bioretention: Filter media | Filter media]]; Hunt and Lord, 2006). A design option to increase phosphorus removal performance of bioretention is to incorporate [[Additives | additives]] into the filter media bed, either blended into the media or as a layer in the aerobic portion of the filter bed, such as iron filings (i.e., zero valent iron)<ref>Erickson, A.J., Gulliver, J.S., Weiss, P.T. 2012. Capturing phosphates with iron enhanced sand filtration. Water Research. 46(9). 3032-3042. https://www.sciencedirect.com/science/article/abs/pii/S0043135412001728 </ref>, fly ash<ref>Zhang, W., Brown, G.O., Storm, D.E., Zhang, H. 2008. Fly-ash amended sand as filter media in bioretention cells to improve phosphorus removal. Water Environment Research. 80(6). 507-516. https://onlinelibrary.wiley.com/doi/abs/10.2175/106143008X266823 </ref> <ref>Kandel, S., Vogel, J., Penn, C., Brown, G. 2017. Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells. Water. 9, 746. https://www.mdpi.com/2073-4441/9/10/746</ref>, iron (ferric) or aluminum hydroxide-based water treatment residuals (by-product from drinking water treatment)<ref>O'Neill, S.W., Davis, A.P. 2012a. Water treatment residual as a bioretention amendment for phosphorus. I. Evaluation studies. Journal of Environmental Engineering. 138(3). pp 318-327. https://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0000409</ref> <ref>O'Neill, S.W., Davis, A.P. 2012b. Water treatment residual as a bioretention amendment for phosphorus. II. long-term column studies. Journal of Environmental Engineering. 138(3). pp 328-336. https://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0000436</ref>, biochar <ref>Nabiul Afrooz, A.R.M., Boehm, A.B. 2017.  Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. Ecological Engineering. 102. 320-330. https://www.sciencedirect.com/science/article/abs/pii/S0925857417301209 </ref> <ref>Mohanty, S.K., Valenca, R., Berger, A.W., Yu, I.K.M., Xiong, X., Saunders, T.M., Tsang, D.C.W. 2018. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Science of the Total Environment. 625. 1644-1658. https://www.sciencedirect.com/science/article/abs/pii/S0048969718300378 </ref>, proprietary filter media additives or blends, or by using iron-rich sand in the filter media blend.  Read about a field evaluation comparing the phosphorus retention performance of parking lot bioretention cells featuring iron-rich sand and proprietary reactive media additive (Sorptive P<sup>TM</sup>) in the STEP [https://sustainabletechnologies.ca/app/uploads/2019/06/improving-nutrient-retention-in-bioretention-tech-brief.pdf technical brief]<ref>Sustainable Technologies Evaluation Program. 2018. Improving nutrient retention in bioretention. Technical Brief. https://sustainabletechnologies.ca/app/uploads/2019/06/improving-nutrient-retention-in-bioretention-tech-brief.pdf</ref>. While moderate reductions in total nitrogen and ammonia nitrogen have been observed in laboratory studies (Davis ''et al''., 2001<ref>Davis, A., M. Shokouhian, H. Sharma and C. Minami. 2001. Laboratory . Study of Biological Retention for Urban Stormwater Management. Water Environment Research. 73(5): 5-14.</ref>) and field studies (Dietz and Clausen, 2005<ref>Dietz, M.E. and J.C. Clausen. 2005. A field evaluation of rain garden flow and pollutant treatment. Water Air and Soil Pollution. Vol. 167. No. 2. pp. 201-208.</ref>), nitrate nitrogen removal has consistently been observed to be low. Design innovations to enhance nitrate-nitrogen removal performance of bioretention is an area of active research.  Promising results have been observed from laboratory column and field-scale evaluations of underdrained practices featuring [[Bioretention: Internal water storage |internal water storage reservoirs]] containing mixtures of clear stone aggregate and shredded newspaper or wood chips, which creates low oxygen or anoxic conditions and promotes conversion of nitrate-nitrogen to nitrogen gas via denitrification <ref>Kim, H., Seagren, E.A., Davis, A.P. 2003. Engineered bioretention for removal of nitrate from stormwater runoff. Water Environment Research. 75(4). 335-367. https://onlinelibrary.wiley.com/doi/abs/10.2175/106143003X141169 </ref> <ref> Brown, R.A., Hunt, W.F. 2011. Underdrain configuration to enhance bioretention exfiltration to reduce pollutant loads. Journal of Environmental Engineering. 137(11). 1082-1091. https://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0000437 </ref> <ref> Wang, C., Wang, F., Qin, H., Zeng, X., Li, X. Yu, S. 2018. Effect of Saturated Zone on Nitrogen Removal Processes in Stormwater Bioretention Systems. Water. 10, 162. https://www.mdpi.com/2073-4441/10/2/162 </ref>. LeFevre et al. (2015) present a state-of-the-art review of dissolved stormwater pollutant sources (focusing on nutrients, toxic metals and organic compounds), typical concentrations, and removal mechanisms and fate in bioretention, along with design options to enhance their retention <ref> LeFevre, G.H., Paus, K.H., Natarajan, P., Gulliver, J.S., Novak, P.J., Hozalski, R.M. 2015. Review of Dissolved Pollutants in Urban Storm Water and Their Removal and Fate in Bioretention Cells. Journal of Environmental Engineering. 141(1). https://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0000876 </ref>.
 
The mechanisms involved in, and ability of bioretention to reduce bacteria and other microbial pathogen concentrations is also an area of active research. Preliminary laboratory and field study results report good but variable removal rates for fecal coliform bacteria from biofilters and bioretention cells (Rusciano and Obropta, 2005<ref> Rusciano, G.M., Obropta, C.C. 2007. Bioretention Column Study: Fecal Coliform and Total Suspended Solids Reductions. Transactions of the ASABE. 50(4): 1261-1269. https://elibrary.asabe.org/abstract.asp??JID=3&AID=23636&CID=t2007&v=50&i=4&T=1 </ref>; Hunt ''et al''., 2006<ref>Hunt, W.F., A.R. Jarrett, J.T. Smith, and L.J. Sharkey. 2006. Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. ASCE Journal of Irrigation and Drainage Engineering. 132(6): 600-608.</ref>; TRCA, 2008<ref>. Performance Evaluation of Permeable Pavement and a Bioretention Swale, Seneca College, King City, Ontario. Prepared under the Sustainable Technologies Evaluation Program (STEP). Toronto, Ontario.</ref>). In a recent review, Clary et al. report bioretention E.coli removal efficiency of 42.5% and fecal coliform removal efficiency of 99.4% based on median inlet and outlet concentrations from 12 and 8 studies, respectively <ref> Clary, J. Jones, Leisenring, M., Hobson, P., Strecker, E. 2020. International Stormwater BMP Database 2020 Statistical Summary. https://www.waterrf.org/system/files/resource/2020-11/DRPT-4968_0.pdf</ref>. In a recent article, Peng et al. (2016) review factors influencing microbial removal and effects of design choices on treatment performance.  They found that approaches for improving the removal of microorganisms by biofilters could involve altering the grain size range and surface properties of the filter media. This could involve the use of filter media with smaller average grain sizes, the inclusion of [[Additives |additives]] (e.g., activated carbon, zeolite, or biochar) to improve filtration rates, or chemical modifications of filter media grain surfaces (e.g., with biocides) to promote microbial die-off. Including an [[Bioretention: Internal water storage |internal water storage reservoir]] was also found to improve microbial removal rates <ref> Peng, J., Cao, Y., Rippy, M.A., Nabuil Afrooz, A.R.M., Grant, S.B. 2016. Indicator and Pathogen Removal by Low Impact Development Best Management Practices. Water. 8. 600. https://www.mdpi.com/2073-4441/8/12/600 </ref>.
 
Recent research into the role of plants in bioretention confirms they play an important roles in hydraulic and nitrogen removal performance. In a recent review of scientific literature, Dagenais ''et al.'' (2018) found that planted facilities are more effective than unplanted ones, as the presence of plants increases filter bed permeability and nitrogen removal. Plant species selection can considerably affect hydraulic and nitrogen removal performance, with root traits (e.g., thickness and depth) identified as playing important roles. They identified further research needed to test the hypothesis that native or diversely-planted facilities perform better than ones planted with exotic or fewer species.<ref>Dagenais, D., Brisson, J. and Fletcher, T.D. 2018. The role of plants in bioretention systems; does the science underpin current guidance?. Ecological Engineering, 120, pp.532-545. http://www.phytotechno.com/wp-content/uploads/2018/10/Dagenais-2018-Bioretention.pdf</ref>


===Stream Channel Erosion===
===Stream Channel Erosion===

Navigation menu